Trigonometry

$$\sin \theta = \frac{y}{r} \frac{(opp.)}{(hyp.)}$$
 $\cos \theta = \frac{x}{r} \frac{(adj.)}{(hyp.)}$ $\tan \theta = \frac{y}{x} \frac{(opp.)}{(adj.)}$

Use Pythagoras to find the 3 trigonometric ratios when given a point.

$$x^2 + y^2 = r^2$$

When solving for an angle:

- Determine the reference angle (θ_r)
- Use the CAST rule to decide which quadrants contain the terminal arm
- Use the reference angle to calculate the angles:
 - \circ **QI** $(\theta = \theta_r)$
 - $\circ \quad \mathbf{QII} \ (\theta = 180^{\circ} \theta_r)$
 - \circ **QIII** $(\theta = 180^{\circ} + \theta_r)$
 - \circ **QIV** $(\theta = 360^{\circ} \theta_r)$

Sine Law:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- Ambiguous Case
 - Two solutions
 - One solution (90°)
 - No solution (Error)

Cosine Law:
$$c^2 = a^2 + b^2 - 2ab \cos C$$

Know your Unit Circle!!

1. P(12, -3) is a point on the terminal arm of angle θ . Find the primary trigonometric ratios for angle θ .

2. Solve: $\tan \theta = -\frac{4}{3}$, $0^{\circ} \le \theta \le 360^{\circ}$

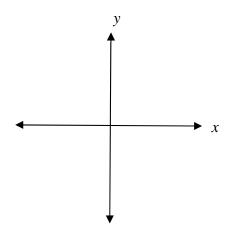
3. Solve: $\sin \theta = -\frac{\sqrt{3}}{2}, 0^{\circ} \le \theta \le 360^{\circ}$

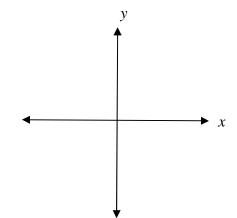
- 4. Use your unit circle to find the exact value of the following:
 - a) cos 225°

c) tan 330°

b) sin 120°

- d) sin 180°
- 5. Determine the angles in standard position for each quadrant that have a reference angle of 35° .


6. In $\triangle ABC$, c = 10 cm, $< C = 52^{\circ}$, and $< B = 60^{\circ}$. Find side b.


7. In $\triangle ABC$, c = 10 cm, b = 9 cm, and a = 8 cm. Find < C.

8. In $\triangle ABC$, $\angle A = 60^{\circ}$, a = 11, b = 12. Solve for $\angle B$.

- 9. Draw the following angles in standard position.
 - a) 135°

b) -305°

