Trigonometric Equations and Identities

January 2014

Question 1

2 marks

Find the coterminal angle to $\frac{27\pi}{5}$ over the interval [-360°, 0°). Solution Method 1 $\frac{27\pi}{5} \left(\frac{180^{\circ}}{\pi} \right) = 27 \left(36^{\circ} \right)$ = 972° 1 mark for conversion to degrees $972^{\circ} - (360^{\circ})(3) = -108^{\circ}$ 1/2 mark for coterminal angle 1/2 mark for correct domain 2 marks Method 2 $-\frac{3\pi}{5}$ is a coterminal angle to $\frac{27\pi}{5}$. 1/2 mark for coterminal angle 1/2 mark for correct domain $-\frac{3\pi}{5} \cdot \frac{180^{\circ}}{\pi} = -108^{\circ}$ 1 mark for conversion to degrees 2 marks

Question 2 (calculator)

Solve the following equation over the interval $0 \le \theta < 2\pi$.

 $(\tan\theta - 3)(\tan\theta + 1) = 0$

Solution

 $(\tan \theta - 3)(\tan \theta + 1) = 0$ $\tan \theta = 3 \qquad \tan \theta = -1$ $\theta_r = 1.249\ 046 \qquad \theta_r = \frac{\pi}{4}$ $\theta = 1.249\ 046 \qquad \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$ $\theta = 1.249, 4.391 \qquad \theta = 2.356\ 194$ $\theta = 5.497\ 787$

1 mark (1/2 mark for each branch)

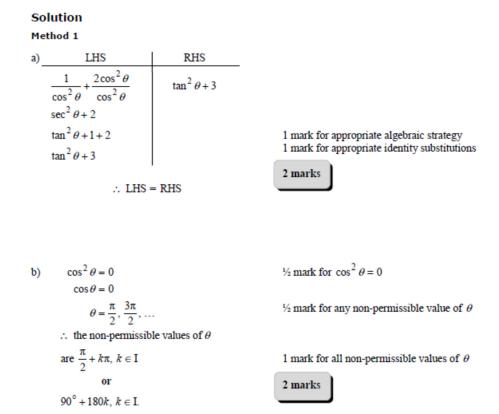
2 marks ($\frac{1}{2}$ mark for each value of θ)

-	110.0	12 2 2	
	ma	112	
_			

 $\therefore \theta = 1.249, \frac{3\pi}{4}, 4.391, \frac{7\pi}{4}$

 $\theta = 1.249, 2.356, 4.391, 5.498$

Solve the following equation over the interval $[0, 2\pi]$.


 $2\cos 2\theta - 1 = 0$

Solution

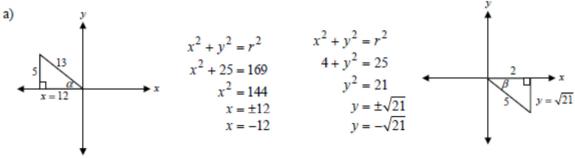
Method 1


 $2\cos 2\theta - 1 = 0$ $2(2\cos^{2} \theta - 1) - 1 = 0$ $4\cos^{2} \theta - 3 = 0$ $\cos^{2} \theta = \frac{3}{4}$ $\cos \theta = \pm \frac{\sqrt{3}}{2}$ $\theta_{r} = \frac{\pi}{6}$ $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$ 1 mark for solving for $\cos \theta$ 2 marks for solutions (½ mark for each consistent solution)4 marks

a) 2 marks b) 2 marks

Solution

Method 2



∴ LHS = RHS

a) 3 marks b) 1 mark

Given that $\sin \alpha = \frac{5}{13}$, where α is in Quadrant II, and $\cos \beta = \frac{2}{5}$, where β is in Quadrant IV, find the exact value of:

Solution

 $\frac{1}{2}$ mark for value of x $\frac{1}{2}$ mark for value of y

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$= \left(-\frac{12}{13}\right) \left(\frac{2}{5}\right) - \left(\frac{5}{13}\right) \left(-\frac{\sqrt{21}}{5}\right)$$
$$= -\frac{24}{65} + \frac{5\sqrt{21}}{65}$$
$$= \frac{5\sqrt{21} - 24}{65}$$

 $\frac{1}{2}$ mark for $\cos \alpha$ $\frac{1}{2}$ mark for $\sin \beta$

1 mark for substitution into correct identity

3 marks

b) $\sin 2\alpha = 2\sin \alpha \cos \alpha$ $= 2\left(\frac{5}{13}\right)\left(-\frac{12}{13}\right)$ $= -\frac{120}{169}$

1 mark for substitution into correct identity

1 mark

June 2013

Question 2 (Calculator)

Solve the equation $csc^2\theta + 3 csc \theta - 4 = 0$ over the interval $[0, 2\pi]$. Express your answers as exact values or correct to 3 decimal places.

Solution

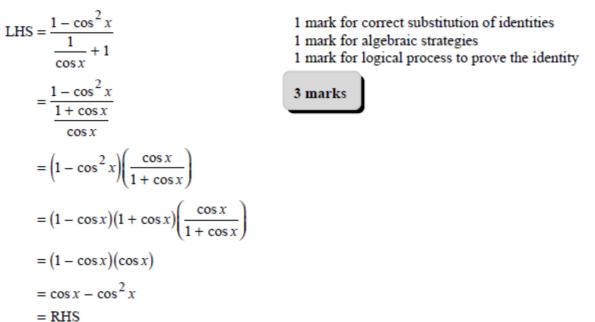
Method 1

$\csc^2 \theta + 3c$	$\operatorname{sc} \theta - 4 = 0$	
$(\csc \theta - 1)(\csc \theta)$	$(c\theta + 4) = 0$	
$\csc \theta = 1$	$\csc\theta = -4$	1 mark for solving for $\csc\theta$
$\sin\theta = 1$	$\sin\theta = -\frac{1}{4}$	1 mark for reciprocal of $\csc \theta$
$\theta = \frac{\pi}{2}$	$\theta_{r} = 0.252\ 680$	
or		
$\theta = 1.570~796$	θ = 3.394 273, 6.030 505	
$\theta = \frac{\pi}{2}$, 3.394, 6.031		2 marks (1 mark for consistent solutions of each trigonometric equation)
or		4 marks
$\theta = 1.571, 3.394, 6.031$		

Solve the following equation algebraically where $180^{\circ} \le \theta \le 360^{\circ}$.

 $2sin^2\theta + 5\cos\theta + 1 = 0$

Solution


$2\left(1-\cos^2\theta\right)+5\cos\theta+1=0$		1 mark for identity		
$2 - 2\cos^2\theta +$	$5\cos\theta + 1 = 0$			
$2\cos^2\theta - 5\cos\theta - 3 = 0$				
$(2\cos\theta + 1)(\cos\theta - 3) = 0$				
$\cos\theta = -\frac{1}{2}$	$\cos\theta = 3$	1 mark for solving for $\cos \theta$		
$\theta_r = 60^\circ$	\therefore no solution	1 mark for indicating no solution		
$\theta = 240^{\circ}$		1 mark for solving for θ		
		4 marks		

Prove the identity below for all permissible values of x.

$$\frac{\sin^2 x}{\sec x + 1} = \cos x - \cos^2 x$$

Solution

Method 1

PC40S

Question 39

On the interval $0 \le \theta < 2\pi$, identify the non-permissible values of θ for the trigonometric identity:

$$\tan \theta = \frac{1}{\cot \theta}$$

Solution

 $\frac{\sin\theta}{\cos\theta} = \frac{1}{\frac{\cos\theta}{\sin\theta}}$

∴ the above identity is non-permissible	1 mark for identifying non-permissible values
when $\cos\theta = 0$ or $\sin\theta = 0$.	$(\frac{1}{2} \max \text{ for } \cos \theta = 0, \frac{1}{2} \max \text{ for } \sin \theta = 0)$

$\cos\theta \neq 0$	$\sin\theta \neq 0$	
$\theta \neq \frac{\pi}{2}, \frac{3\pi}{2}$	$\theta \neq 0, \pi$	1 mark for solving for θ (½ mark for each solution set)
$\theta \neq 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$		2 marks
$v \neq 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$		