Trigonometric Equations and Identities

January 2014

Question 1
2 marks

Find the coterminal angle to $\frac{27 \pi}{5}$ over the interval $\left[-360^{\circ}, 0^{\circ}\right)$.

Solution

Method 1

$$
\begin{aligned}
\frac{27 \pi}{5}\left(\frac{180^{\circ}}{\pi}\right) & =27\left(36^{\circ}\right) \\
& =972^{\circ}
\end{aligned}
$$

1 mark for conversion to degrees
$972^{\circ}-\left(360^{\circ}\right)(3)=-108^{\circ}$
$1 / 2$ mark for coterminal angle
$1 / 2$ mark for correct domain
2 marks

Method 2
$-\frac{3 \pi}{5}$ is a coterminal angle to $\frac{27 \pi}{5}$.
$1 / 2$ mark for coterminal angle
$1 / 2$ mark for correct domain
$-\frac{3 \pi}{5} \cdot \frac{180^{\circ}}{\pi}=-108^{\circ}$
1 mark for conversion to degrees
2 marks

Solve the following equation over the interval $0 \leq \theta<2 \pi$.

$$
(\tan \theta-3)(\tan \theta+1)=0
$$

Solution

$$
\begin{array}{rlrl}
(\tan \theta-3)(\tan \theta+1) & =0 \\
\tan \theta & =3 & \tan \theta & =-1 \\
\theta_{r} & =1.249046 & \theta_{r} & =\frac{\pi}{4} \\
\theta & =1.249046 & \theta & =\frac{3 \pi}{4}, \frac{7 \pi}{4} \\
\theta & =4.390639 & & \text { or } \\
\theta & =1.249,4.391 & \theta & =2.356194 \\
& \theta & =5.497787
\end{array}
$$

$$
\therefore \theta=1.249, \frac{3 \pi}{4}, 4.391, \frac{7 \pi}{4}
$$

or

$$
\theta=1.249,2.356,4.391,5.498
$$

Question 7

Solve the following equation over the interval $[0,2 \pi]$.

$$
2 \cos 2 \theta-1=0
$$

Solution

Method 1

$$
\begin{array}{rlrl}
2 \cos 2 \theta-1 & =0 & & \\
2\left(2 \cos ^{2} \theta-1\right)-1 & =0 & & 1 \text { mark for identity } \\
4 \cos ^{2} \theta-3 & =0 & & \\
\cos ^{2} \theta & =\frac{3}{4} & & 1 \text { mark for solving for } \cos \theta \\
\cos \theta & = \pm \frac{\sqrt{3}}{2} & & \\
\theta_{r} & =\frac{\pi}{6} & & \begin{array}{l}
2 \text { marks for solutions }(1 / 2 \text { mark for each } \\
\theta
\end{array} \\
\text { consistent solution) }
\end{array}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \times 2 \text { marks } \quad 4 .
$$

Question 12
 a) 2 marks b) 2 marks

Solution

Method 1

a)	LHS
$\frac{1}{\cos ^{2} \theta}+\frac{2 \cos ^{2} \theta}{\cos ^{2} \theta}$	$\tan ^{2} \theta+3$
$\sec ^{2} \theta+2$	
$\tan ^{2} \theta+1+2$	
$\tan ^{2} \theta+3$	

\therefore LHS $=$ RHS
b)

$$
\begin{aligned}
\cos ^{2} \theta & =0 \\
\cos \theta & =0 \\
\theta & =\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots
\end{aligned}
$$

\therefore the non-permissible values of θ

$$
\text { are } \frac{\pi}{2}+k \pi, k \in \mathrm{I}
$$

or
$90^{\circ}+180 k, k \in \mathrm{I}$.

1 mark for appropriate algebraic strategy
1 mark for appropriate identity substitutions

2 marks

$1 / 2$ mark for $\cos ^{2} \theta=0$
$1 / 2$ mark for any non-permissible value of θ

1 mark for all non-permissible values of θ

2 marks

Solution

Method 2

a) | LHS | RHS |
| :---: | :--- |
| $\frac{1+2 \cos ^{2} \theta}{\cos ^{2} \theta}$ | $\tan ^{2} \theta+3$ |
| | $\sec ^{2} \theta-1+3$ |
| $\sec ^{2} \theta+2$ | |
| | $\frac{1}{\cos ^{2} \theta}+2$ |
| $\frac{1}{\cos ^{2} \theta}+\frac{2 \cos ^{2} \theta}{\cos ^{2} \theta}$ | |
| $\frac{1+2 \cos ^{2} \theta}{\cos ^{2} \theta}$ | |

\therefore LHS $=$ RHS

1 mark for appropriate identity substitutions
1 mark for appropriate algebraic strategy
2 marks

Question 14 a) 3 marks
 b) 1 mark

Given that $\sin \alpha=\frac{5}{13}$, where α is in Quadrant II, and $\cos \beta=\frac{2}{5}$, where β is in Quadrant IV, find the exact value of:

Solution

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+25 & =169 \\
x^{2} & =144 \\
x & = \pm 12 \\
x & =-12
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
4+y^{2} & =25 \\
y^{2} & =21 \\
y & = \pm \sqrt{21}
\end{aligned}
$$

$1 / 2$ mark for value of x
$1 / 2$ mark for value of y

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

$$
=\left(-\frac{12}{13}\right)\left(\frac{2}{5}\right)-\left(\frac{5}{13}\right)\left(-\frac{\sqrt{21}}{5}\right)
$$

$1 / 2$ mark for $\cos \alpha$
$1 / 2$ mark for $\sin \beta$

$$
=-\frac{24}{65}+\frac{5 \sqrt{21}}{65}
$$

$$
=\frac{5 \sqrt{21}-24}{65}
$$

1 mark for substitution into correct identity

3 marks

b) $\sin 2 \alpha=2 \sin \alpha \cos \alpha$

$$
\begin{aligned}
& =2\left(\frac{5}{13}\right)\left(-\frac{12}{13}\right) \\
& =-\frac{120}{169}
\end{aligned}
$$

1 mark for substitution into correct identity

1 mark

June 2013

Question 2 (Calculator)
Solve the equation $\csc ^{2} \theta+3 \csc \theta-4=0$ over the interval $[0,2 \pi]$.
Express your answers as exact values or correct to 3 decimal places.

Solution

Method 1

$$
\begin{aligned}
& \csc ^{2} \theta+3 \csc \theta-4=0 \\
& (\csc \theta-1)(\csc \theta+4)=0 \\
& \csc \theta=1 \quad \csc \theta=-4 \quad 1 \text { mark for solving for } \csc \theta \\
& \sin \theta=1 \quad \sin \theta=-\frac{1}{4} \\
& \theta=\frac{\pi}{2} \quad \theta_{r}=0.252680 \\
& \text { or } \\
& \theta=1.570796 \quad \theta=3.394273,6.030505 \\
& \theta=\frac{\pi}{2}, 3.394,6.031 \\
& \text { or } \\
& 2 \text { marks (1 mark for consistent solutions of } \\
& \text { each trigonometric equation) } \\
& 4 \text { marks }
\end{aligned}
$$

$$
\theta=1.571,3.394,6.031
$$

Question 7
Solve the following equation algebraically where $180^{\circ} \leq \theta \leq 360^{\circ}$.

$$
2 \sin ^{2} \theta+5 \cos \theta+1=0
$$

Solution

$$
\begin{array}{rlrl}
2\left(1-\cos ^{2} \theta\right)+5 \cos \theta+1 & =0 & & 1 \text { mark for identity } \\
2-2 \cos ^{2} \theta+5 \cos \theta+1 & =0 & & \\
2 \cos ^{2} \theta-5 \cos \theta-3 & =0 & & \\
(2 \cos \theta+1)(\cos \theta-3) & =0 & & 1 \text { mark for solving for } \cos \theta \\
\cos \theta=-\frac{1}{2} & \cos \theta & =3 & \\
\theta_{r} & =60^{\circ} & \therefore \text { no solution } & \\
\theta & 1 \text { mark for indicating no solution } \\
\theta & =240^{\circ} & & 1 \text { mark for solving for } \theta \\
& & 4 \text { marks }
\end{array}
$$

Prove the identity below for all permissible values of x.

$$
\frac{\sin ^{2} x}{\sec x+1}=\cos x-\cos ^{2} x
$$

Solution

Method 1

$$
\begin{aligned}
\text { LHS } & =\frac{1-\cos ^{2} x}{\frac{1}{\cos x}+1} \\
& =\frac{1-\cos ^{2} x}{\frac{1+\cos x}{\cos x}} \\
& =\left(1-\cos ^{2} x\right)\left(\frac{\cos x}{1+\cos x}\right) \\
& =(1-\cos x)(1+\cos x)\left(\frac{\cos x}{1+\cos x}\right) \\
& =(1-\cos x)(\cos x) \\
& =\cos x-\cos 2 x \\
& =\text { RHS }
\end{aligned}
$$

$$
1 \text { mark for correct substitution of identities }
$$

$$
1 \text { mark for algebraic strategies }
$$

$$
1 \text { mark for logical process to prove the identity }
$$

On the interval $0 \leq \theta<2 \pi$, identify the non-permissible values of θ for the trigonometric identity:

$$
\tan \theta=\frac{1}{\cot \theta}
$$

Solution

$$
\frac{\sin \theta}{\cos \theta}=\frac{1}{\frac{\cos \theta}{\sin \theta}}
$$

\therefore the above identity is non-permissible when $\cos \theta=0$ or $\sin \theta=0$.

$$
\begin{array}{rlrl}
\cos \theta & \neq 0 & \sin \theta & \neq 0 \\
\theta & \neq \frac{\pi}{2}, \frac{3 \pi}{2} & \theta & \neq 0, \pi \\
\theta & \neq 0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2} &
\end{array}
$$

1 mark for identifying non-permissible values
$(1 / 2$ mark for $\cos \theta=0,1 / 2$ mark for $\sin \theta=0$)

1 mark for solving for $\theta(1 / 2$ mark for each solution set)

$$
2 \text { marks }
$$

