Transformations

January 2014

Question 8
1 mark

Alex incorrectly explains to Rashid that the graph of $y=2 f(x)+5$ means you first move the graph of $y=f(x)$ up 5 units and then multiply the y values by 2 .

Explain to Rashid the correct way to transform the graph.

Solution

Alex explains the transformations correctly, but not in the correct order.
First multiply the y-values by 2 , then move the graph up 5 units.

1 mark for explanation
1 mark

Given the graph of $f(x)$ below,

Sketch the graph of $g(x)=f(x-2)+3$

Solution

1 mark for horizontal shift
1 mark for vertical shift
2 marks

Given $f(x)=(x+1)^{2}$ for $x \leq-1$, write the equation of $y=f^{-1}(x)$.

Solution

Method 1

$$
\begin{array}{ll}
y=(x+1)^{2} & \\
x=(y+1)^{2} & 1 \text { mark for inverse } \\
y= \pm \sqrt{x}-1 & 1 / 2 \text { mark for solving for } y
\end{array}
$$

Since the domain of $f(x)$ is $x \leq-1$,
the range of the inverse is $y \leq-1$.

$$
\begin{aligned}
\therefore y & =-\sqrt{x}-1 \\
f^{-1}(x) & =-\sqrt{x}-1
\end{aligned}
$$

$1 / 2$ mark for rejecting $y=\sqrt{x}$
2 marks

June 2013

Question 11
2 marks

Given the graph of $y=f(x)$, describe the transformations to obtain the graph of the function $y=f(2 x-6)$.

Solution

Method 1

Factor out the 2.

$$
y=f(2(x-3))
$$

Horizontally compress by a factor of 2 .
Then shift 3 units to the right.

1 mark for starting with a horizontal compression by a factor of 2
1 mark for ending with a horizontal shift of 3 units to the right

Given $f(x)=\{(-3,4),(2,7),(8,6)\}$, state the domain of the resulting function after $f(x)$ is reflected through the line $y=x$.

Solution

Domain: $\{4,6,7\} \quad 1$ mark for correct domain
1 mark

Given $f(x)=4-x$, verify that $f^{-1}(x)=f(x)$

Solution

Method 1

$$
y=4-x
$$

To find $f^{-1}(x)$, switch x and y values.

$$
\begin{aligned}
x & =4-y \\
-y & =x-4 \\
y & =4-x
\end{aligned}
$$

$$
f^{-1}(x)=4-x \quad 1 \text { mark for verifying } f^{-1}(x)=f(x)
$$

