Pre-Calculus 12 Enriched Transformations Challenge

1. The function $f(x)$ satisfies the equation $f(x)=f(x-1)+f(x+1)$ for all values of x. Define $f(1)=1$ and $f(3)=3$; then, $f(2)=1+3=4$. Determine the value of $f(1867)$.
2. For x and k real numbers, determine at what values of k the graphs of $f(x)=-2 \sqrt{x+1}$ and $g(x)=\sqrt{x-2}+k$ will intersect.
3. The equation $y=x^{2}+2 a x+a$ represents a parabola for all real values of a.
a.) Prove that each of these parabolas passes through a common point and determine the coordinates of this point.
b.) The vertices of the parabolas in part a) above lie on a curve. Prove that this curve is itself a parabola whose vertex is the common point found in part a.)
4. A fixed point of a function is an element of the domain that is mapped to itself by the function. That is, if $f(x)$ is a function and $f(p)=p$, then p is a fixed point of the function $f(x)$. Determine the fixed points, if any, of the following functions (assume x is an element of the real numbers):
a.) $f(x)=4 x^{2}-x-6$
b.) $f(x)=\frac{x}{1-x}$
c.) $f(x)=|x|-2$

5. Floor and Ceiling Functions:

Define the floor for a real number, x, to be the largest integer $\leq x$. We write the floor of x as $\lfloor x\rfloor$.
Define the ceiling for a real number, x, to be the smallest integer $\geq x$. We write the ceiling of x as $\lceil x\rceil$.
a.) If $f(x)=\lfloor x\rfloor$, determine the values of $f(8.6), f(2), f(-2.6)$.
b.) If $g(x)=\lceil x\rceil$, determine the values of $g(8.6), g(2), g(-2.6)$.
6. Indicator Function An Indicator function, $f(x)$, is a function that takes the value 1 if some condition on x is true, and the value 0 if the condition is not true. For integers x, define an indicator function:
$f(x)= \begin{cases}1 & \text { if } x \text { is divisible by } 2 \\ 0 & \text { if } x \text { is not divisible by } 2\end{cases}$
and define another indicator function:
$g(x)= \begin{cases}1 & \text { if } x \text { is divisible by } 3 \\ 0 & \text { if } x \text { is not divisible by } 3\end{cases}$
a.) Determine the values of $f(2), f(9), f(4086), g(2), g(9), g(4086)$.
b.) Let $h(x)=f(x) g(x)$. Determine whether $h(x)$ is an indicator function, and, if so, describe in words the condition it indicates.
7. Modulo Function The function $m_{k}(x)$ has as its domain the non-negative integers. It is defined such that $m_{k}(x)$ is the smallest non-negative remainder when x is divided by the positive integer k. For example, $m_{4}(14)=2$; $m_{13}(42)=3$.
a.) Determine the values of $m_{9}(101), m_{6}(720), m_{7}(55)$.
b.) State the range of the function $m_{k}(x)$.

