The Derivative of a Function

Recall:

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(h)}{h}
$$

when it exists this limit is called the derivative of f at a.

DRin
The derivative of the function f writ. the variable x is the for f whose value is

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the limit exists
Notations

$$
y^{\prime} f^{\prime}(x) \quad \frac{d y}{d x} \quad D_{x y} \quad \frac{d f(x)}{d x}
$$

$d x$. Find the derivative of the given fen. using the definition of the derivative.

$$
\text { a) } f(x)=2 x^{3}
$$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

$$
=\lim _{\Delta \vec{x}^{0}} \frac{2(x+\Delta x)^{3}-2 x^{3}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{(2 x+2 \Delta x)\left(x^{2}+2 x \Delta x+\Delta x x^{2}\right)-2 x^{3}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{2 x^{3}+6 x^{2} \Delta x+6 x \Delta x^{2}+2 \Delta x^{3}-2 x^{3}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\Delta x\left(6 x^{2}+6 x \Delta x+2 \Delta x^{2}\right)}{\Delta x}
$$

$$
f^{\prime}(x)=6 x^{2}+6 x(0)+2(0)^{2}
$$

$$
f^{\prime}(x)=6 x^{2}
$$

Shortcut:

$$
\begin{aligned}
f(x) & =2 x^{3} \\
f^{\prime}(x) & =2 \cdot 3 x^{3-1} \\
& =6 x^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
f(x) & =3 x^{2} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-3 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3\left(x^{2}+2 x h+h^{2}\right)-3 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-3 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(6 x+3 h)}{h} \\
& =6 x+3(0) \\
& =6 x
\end{aligned}
$$

Def'n of Derivative sheet odds

The Power Rule

$$
\frac{d}{d x} x^{n}=n \cdot x^{n-1} \quad \begin{aligned}
& y=x^{n} \\
& \frac{d y}{d x}=n \cdot x^{n-1}
\end{aligned}
$$

Derivative of a Function. notebook

$$
\begin{aligned}
& \text { The Power Rule } \\
& \text { ex. } 1 \text { State the derivative of: } \\
& \begin{array}{ll}
\text { a) } 10 x & 10 \\
\text { b) } 6 x^{3}-4 x^{2}+5 x \\
18 x^{2}-8 x+5 \\
\text { b) } 27 & \\
0 & \frac{d}{d x}(10 x)=10 \\
\text { c) } \\
\text { d) } y=\frac{1}{x^{3}} & \\
y^{\prime}=x^{-3} & 27 x^{0} \\
y^{\prime}=-3 x^{-4} & \text { or } \\
\frac{-3}{x^{4}} & 0
\end{array}
\end{aligned}
$$

e) $\frac{5 x^{3}+x^{2}}{x}$

$$
\begin{gathered}
\frac{x\left(5 x^{2}+x\right)}{x} \\
5 x^{2}+x \\
10 x+1
\end{gathered}
$$

$$
\begin{aligned}
& \text { if given } \\
& \text { or } \begin{aligned}
& \text { Notation } \\
& f(x)=-3 x^{4}-x+5 \\
& f^{\prime}(x)=-12 x^{3}-1
\end{aligned}
\end{aligned}
$$

$$
\frac{d}{d x}\left(\frac{5 x^{3}+x^{2}}{x}\right)=10 x+1
$$

Recall

$$
\sqrt{x}=x^{\frac{1}{2}}
$$

