## Lesson 7 Calculating Circular Functions

Equation of the unit circle: $x^{2}+y^{2}=1$

- Represents the circle with centre at the origin and radius 1 unit.

For any angle, $\theta$ in standard position, with terminal point $P(x, y)$ on a circle with radius, $r$ :

$$
\begin{array}{lll}
\sin \theta=y & \text { reciprocal trig fans } \\
\cos \theta=x & \csc \theta=\frac{1}{y} & \operatorname{cosecant} \\
\tan \theta=\frac{y}{x} & \sec \theta=\frac{1}{x} & \operatorname{secant} \\
& \cot \theta=\frac{x}{y} & \text { cotangent }
\end{array}
$$



Ex. 1) Determine the value to the nearest thousandth.
a) $\sec 106^{\circ} \quad \frac{1}{\cos 106^{\circ}}=-3.628$
b) $\csc 64^{\circ}$

$$
\frac{1}{\sin 64^{\circ}}=1.113
$$

c) $\cot \left(-88^{\circ}\right)$

$$
\begin{aligned}
& \frac{1}{\tan \left(-88^{\circ}\right)}=-0.035 \\
& \text { or } \frac{\cos \left(-88^{\circ}\right)}{\sin \left(-88^{\circ}\right)}
\end{aligned}
$$

Ex. 2) Given $\mathrm{P}(-1,-4)$ is a terminal point of angle $\theta$ in standard position, determine the exact values of the six) trigonometric ratios.

$1^{2}+4^{2}=r^{2}$
$17: r^{2}$
$\sqrt{17}=r$

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \csc \theta=\frac{r}{y} \\
& \sin \theta=-\frac{4}{\sqrt{17}} \\
& \cos \theta=\frac{x}{r} \\
& \sec \theta=\frac{r}{x} \\
& \cos \theta=-\frac{1}{\sqrt{17}} \\
& \sec \theta=-\sqrt{17} \\
& \tan \theta=\frac{y}{x} \\
& \cot \theta=\frac{x}{y} \\
& \tan \theta=4 \\
& \cot \theta=\frac{1}{4}
\end{aligned}
$$

Ex. 3) Given $P(0,-3)$ is a terminal point of an angle in standard position, determine the exact values of the 6 trigonometric ratios.


Ex. 4) Given $\sec \theta=4$, determine the exact values of the other trigonometric ratios for
$\underbrace{0^{\circ} \leq \theta \leq 180^{\circ}}_{\text {QS and II }}$
$\sec \theta>0$
$\operatorname{in} \theta J$

$$
\begin{aligned}
& \sec \theta=4 \\
& \cos \theta=\frac{1}{4} \frac{\text { adj }}{\text { hyp }} \\
& \sin \theta=\frac{\sqrt{15}}{4} \\
& \csc \theta=\frac{4}{\sqrt{15}} \\
& \tan \theta=\sqrt{15} \\
& \cot \theta=\frac{1}{\sqrt{15}}
\end{aligned}
$$

