Lesson 5 Solving Problems with Two Right Triangles

Recall:

Angle of Elevation (inside the

> The angle of elevation is the angle formed by the line of sight and the horizontal plane for an object above the horizontal.

Angle of Depression

The angle of depression is the angle formed by the line of sight and the horizontal plane for an object below the horizontal.

Angle of Elevation = Angle of Depression

Example 1
Determine the length of CD correct to 3 decimal places.

(1) Use $\triangle A B D$ to calculate the length of side $B D$ (common side)

SSH CAM TVA

$$
\sin 47^{\circ}=\frac{4.2}{B D}
$$

$B D \sin 47^{\circ}=4.2$

$$
B D=\frac{4.2}{\sin 47^{\circ}}
$$

$B D=5.74277 \ldots$
(2) Determine the length of CD

SOHCAH TOM

$$
\begin{aligned}
\cos 26^{\circ} & =\frac{C D}{B D}+\text { recalled answer }(5,74277 \ldots) \\
5.74277 \ldots\left(\cos 26^{\circ}\right) & =C D \\
5.162 \mathrm{~cm} & =C D
\end{aligned}
$$

Example 2

A surveyor stands at a window on the $9^{\text {th }}$ floor of an office tower. He uses a clinometer to measure the angles of elevation and depression of the top and the base of a taller building. The surveyor sketches the following plan of his measurements. Determine the height of the taller building to the nearest tenth of a metre.

, SOL CAM TOB
(1)

Common side

$$
\tan 42^{\circ}=\frac{39}{y}
$$

$$
y \tan 42^{\circ}=39
$$

$$
y=\frac{39}{\tan 42^{\circ}}
$$

$$
y=43.3138 \ldots
$$

(2) Calculate x

$$
\begin{aligned}
\tan \underbrace{31^{\circ}}_{\text {milt }} & =\frac{x}{43.3138 \ldots} \\
x & =26.025 \ldots \\
\text { height } & =39+x \\
& =65.0 \mathrm{~m}
\end{aligned}
$$

Example 3

A police airplane, flying at an altitude of 800 m , spots a speeding vehicle at an angle of depression of 52°. If a roadblock is set up along the same highway at an angle of depression of 23°, determine the distance the vehicle is from the roadblock to the nearest hundredth of a kilometer.

