Lesson Five - Surface Area and Volume of a Sphere

Surface Area of a Sphere

Page 45 - Construct Understanding

Surface Area of a Sphere

The surface area, $S A$, of a sphere with radius r is: $S A=4 \pi r^{2}$

Example 1

The diameter of a softball is approximately 4 in. Determine the surface area of a softball to the nearest square inch.

$$
\begin{array}{rlrl}
S A & =4 \pi r^{2} \\
& =4 \pi(2)^{2} \\
& =50.265 \ldots \\
\therefore \text { surface ardis is } 50 \mathrm{in}^{2}
\end{array}
$$

Example 2

The surface area of a soccer ball is approximately 250 square inches. What is the diameter of a soccer ball to the nearest tenth of an inch?

$$
\begin{array}{rlr}
S A & =4 \pi r^{2} \\
250 & =4 \pi r^{2} \\
\begin{aligned}
& 250 \\
&(4 \pi)=r^{2}
\end{aligned} & \\
\sqrt{\text { ans }}=r \\
4.46 \ldots & =r \\
\text { radius is } 4.46 \ldots \text { in }
\end{array}
$$

Volume of a Sphere

Volume of a Sphere

The volume, V, of a sphere with radius r is:

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
V=\frac{4 \pi r^{3}}{3}
$$

Example 3

The moon approximates a sphere with diameter 2160 mi . What is the approximate volume of the moon?

$$
\begin{aligned}
V & =\frac{4 \pi r^{3}}{3} \\
& =\frac{4 \pi(1080)^{3}}{3} \\
& =5276669286 \mathrm{mi} \\
& \approx 5300000000 \mathrm{mi}^{3} \\
& \text { or } 5.3 \times 10^{9} \mathrm{mi}^{3}
\end{aligned}
$$

When a sphere is cut in half, two hemispheres are formed.

$$
\begin{aligned}
\text { SA } & =2 \pi r^{2}+\quad b a s e \\
& =3 \pi r^{2} \\
\text { USA } & =2 \pi r^{2}
\end{aligned}
$$

Example 4

A hemisphere has radius 5.0 cm .
a) What is the surface area of the hemisphere to the nearest tenth of a square centimeter?
b) What is the volume of the hemisphere to the nearest tenth of a cubic centimeter?
a) $S A=\frac{1}{2}$ sphere + area ot a circle

$$
\begin{aligned}
& =\frac{1}{2} \text { sphere }+ \text { area ot a circle } \\
& =\frac{1}{2}\left(4 \pi r^{2}\right)+\pi r^{2} \leftarrow \text { could plug } r=5 \text { in here } \\
& =3 \pi r^{2}
\end{aligned}
$$

$$
=3 \pi(5)^{2}
$$

$$
=235.6 \mathrm{~cm}^{2}
$$

b) $V=\frac{4 \pi r^{3}}{3} \div 2 \quad$ or $\quad V=\frac{2}{3} \pi r^{3}$

$$
V=\frac{4 \pi(5)^{3}}{3} \div 2 \quad V=\frac{2}{3} \pi(5)^{3}
$$

Assignment: Pg 51; 3 (a, c), $5 \mathrm{a}, 8,10,12,17 \mathrm{a}$

