Lesson 4 Sum and Difference Identities...again

$$
\cos B>0 \text { and } \therefore 0 \zeta
$$

Ex. 1) Given $\sin \alpha=\frac{3}{5}$ with α in QII and $\cos \beta=\frac{5}{13}$ with $\tan \beta>0$, determine the exact value of
a) $\sin (\alpha+\beta)$

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\left(\frac{3}{5}\right)\left(\frac{5}{13}\right)+\left(-\frac{4}{5}\right)\left(\frac{12}{13}\right) \\
& =\frac{15}{65}-\frac{48}{65} \\
& =\frac{-33}{65}
\end{aligned}
$$

$3,4,5$ triplets
$5,12,13$ or
use pythagorean them
b) $\cos (\alpha+\beta)$

$$
\begin{aligned}
& \cos (\alpha+\beta) \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
&=\left(-\frac{1}{5}\right)\left(\frac{5}{13}\right)-\left(\frac{3}{5}\right)\left(\frac{12}{13}\right) \\
&=-\frac{20}{65}-\frac{36}{65} \\
&=\frac{-56}{65}
\end{aligned}
$$

c) $\tan (\alpha+\beta)$

$$
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)} \\
& =\frac{\frac{-33}{25}}{\frac{-56}{15}} \\
& =\frac{33}{56}
\end{aligned}
$$

d) The coordinates of $\mathrm{P}(\alpha+\beta)$

$$
\begin{aligned}
& (\cos (\alpha+\beta), \sin (\alpha+\beta)) \\
& \left(-\frac{56}{65},-\frac{33}{65}\right) \\
& \text { in quadrant } \frac{\pi 1}{}
\end{aligned}
$$

Ex. 2) Using $\cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)$, verify that $\cos \pi=-1$.

$$
\begin{aligned}
\cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right) & =\cos \frac{\pi}{2} \cos \frac{\pi}{2}-\sin \frac{\pi}{2} \sin \frac{\pi}{2} \\
& =0 \cdot 0-1 \cdot 1 \\
\cos (\pi) & =-1
\end{aligned}
$$

Ex. 3) Prove $\sin (\pi-x)=\sin x$ diff identity

Left-Hand Side	Right-Hand Side
$\begin{array}{cc}\sin \pi \cos x-\cos \pi \sin x & \sin x \\ \sin x & \sin x\end{array}$	
LIfts $=$	RUS \checkmark

Ex. 4) Prove $\sin (A+B)+\underline{\sin (A-B)}=2 \sin A \cos B$

pg 292
\# $2 d, f, h$ $3 a, c, d, e, f$ $5 a, e, d$

