Pre-Calculus 12 Enriched Trigonometric Equations & Identities

Lesson 4 Sum and Difference Identities...again

Ex. 1) Given $\sin \alpha = \frac{3}{5}$ with α in QII and $\cos \beta = \frac{5}{13}$ with $\tan \beta > 0$, determine the exact value of

a)
$$\sin(\alpha + \beta)$$

 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
 $= \left(\frac{3}{5}\right)\left(\frac{5}{13}\right) + \left(-\frac{4}{5}\right)\left(\frac{12}{13}\right)$
 $= \frac{15}{65} - \frac{48}{65}$
 $= -\frac{33}{65}$

b)
$$\cos(\alpha + \beta)$$

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
 $= \left(-\frac{4}{5}\right)\left(\frac{5}{13}\right) - \left(\frac{3}{5}\right)\left(\frac{12}{13}\right)$
 $= -\frac{20}{65} - \frac{36}{65}$
 $= -\frac{56}{65}$

c)
$$\tan(\alpha + \beta)$$

 $\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$
 $= \frac{-\frac{33}{56}}{\frac{56}{56}}$

d) The coordinates of $P(\alpha + \beta)$

$$(\cos(\alpha + \beta), \sin(\alpha + 0))$$

 $(-\frac{56}{65}, -\frac{33}{65})$
 $(\sin quadrant II)$

~ ~

Pre-Calculus 12 Enriched Trigonometric Equations & Identities

Ex. 2) Using
$$\cos\left(\frac{\pi}{2} + \frac{\pi}{2}\right)$$
, verify that $\cos \pi = -1$.
 $\cos\left(\frac{\pi}{2} + \frac{\pi}{2}\right) = \cos \frac{\pi}{2} \cos \frac{\pi}{2} - \sin \frac{\pi}{2} \sin \frac{\pi}{2}$
 $= 0 \cdot 0 - 1 \cdot 1$
 $\cos\left(\frac{\pi}{2}\right) = -1$

Ex. 3) Prove $\sin(\pi - x) = \sin x$ diff identity

Left-Hand Side	Right-Hand Side
SINT COSX - COSTSI'NX	π [°] n X
Deesx - (-1) sinx	
sin×	
L1+5 =	RHS V

Ex. 4) Prove $\underline{\sin(A+B)} + \underline{\sin(A-B)} = 2 \sin A \cos B$

