Pre-Calculus 12 Enriched Trigonometric Equations & Identities

Lesson 3 Sum and Difference Identities

Sum Identities	Difference Identities
$\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta$	$\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta$
$\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta$	$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$
$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$	$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$

We use these to determine exact values of angles not on the special circle.

Ex. 1) Determine the exact value of $\cos \frac{7\pi}{12}$. $\frac{7\pi}{12} = \frac{3\pi}{12} + \frac{4\pi}{12} \qquad \cos(\alpha + \beta) = \cos \alpha \cos\beta - \sin \alpha \sin\beta$ $= \frac{\pi}{4} + \frac{\pi}{3} \qquad \cos(\pi + \frac{\pi}{3}) = \cos \pi \cos\beta - \sin \alpha \sin\beta$ $= \sqrt{2} \cos(\pi + \frac{\pi}{3}) = \cos \pi \cos\beta - \sin \alpha \sin\beta$ $= \sqrt{2} \cos(\pi + \frac{\pi}{3}) = \cos \pi \cos\beta - \sin \alpha \sin\beta$ $= \sqrt{2} \cos(\pi + \frac{\pi}{3}) = \cos \pi \cos\beta - \sin \alpha \sin\beta$ $= \sqrt{2} \cos(\pi + \frac{\pi}{3}) = \cos \pi \cos\beta - \sin \alpha \sin\beta$ $= \sqrt{2} \sin^{2}\beta - \sin^{2}\beta$ $= \sqrt{2} \sin^$

Ex. 2) Determine the exact value of
$$\tan \frac{5\pi}{12}$$
.
Sum $\frac{5\pi}{12} = \frac{2\pi}{12} + \frac{3\pi}{12}$ $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha + \tan \beta}$
 $= \frac{\pi}{12} + \frac{\pi}{12}$ $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha + \tan \beta}$
 $= \frac{\pi}{12} + \frac{\pi}{12}$ $\tan (\alpha + \beta) = \frac{\tan \alpha}{1 - \tan \alpha + \tan \beta}$
 $= \frac{\pi}{12} + \frac{\pi}{12}$ $\tan (\alpha + \beta) = \frac{\tan \alpha}{1 - \tan \alpha + \tan \beta}$
 $= \frac{\sqrt{3}}{1 - \tan \frac{\pi}{5} + \tan \frac{\pi}{7}}$
 $= \frac{\sqrt{3}}{1 - \tan \frac{\pi}{5} + \tan \frac{\pi}{7}}$
 $= \frac{\sqrt{3}}{3} + 1(\frac{3}{3})$
 $= \frac{\sqrt{3} + 3}{3}$
 $= \frac{\sqrt{3} + 3}{3 - \sqrt{3}}$

.

.

Pre-Calculus 12 Enriched Trigonometric Equations & Identities

Ex. 3) Determine the exact value of
$$\sin \frac{3\pi}{2} \cos \frac{\beta}{4} - \cos \frac{3\pi}{2} \sin \frac{5\pi}{4}$$
.
 $\sin (\alpha - \beta)$ (eff hand side
 $\sin (\frac{3\pi}{2} - \frac{5\pi}{4})$
 $\sin (\frac{6\pi}{4} - \frac{5\pi}{4})$
 $\sin \frac{\pi}{4}$

Ex. 4) Determine the exact value of
$$\cos \frac{\pi}{12} \cos \frac{\pi}{3} + \sin \frac{\pi}{12} \sin \frac{\pi}{3}$$
.

$$cos(\alpha - \beta) = cos \frac{\pi}{12} cos \frac{\pi}{3} + sin \frac{\pi}{12} sin \frac{\pi}{3}$$

$$cos(\frac{\pi}{12} - \frac{\pi}{3})$$

$$cos(\frac{\pi}{12} - \frac{4\pi}{12})$$

$$cos(-\frac{3\pi}{12})$$

$$cos(-\frac{\pi}{4})$$

$$\frac{\sqrt{2}}{2}$$

Ex. 5) Express
$$\cos\left(\frac{\pi}{2} + x\right)$$
 as a function of x only.
 $\cos\left(\frac{\pi}{2} + x\right) = \cos\left(\frac{\pi}{2}\cos(x) - \sin\frac{\pi}{2}\sin(x)\right)$
 $= \cos(x) - \sin(x)$