L3 Sum and Difference Identities. notebook

Pre-Calculus 12 Enriched Trigonometric Equations \& Identities

Lesson 3 Sum and Difference Identities

Sum Identities

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
\end{aligned}
$$

Difference Identities

$$
\begin{aligned}
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

We use these to determine exact values of angles not on the special circle.

Ex. 1) Determine the exact value of $\cos \frac{7 \pi}{12}$.

$$
\begin{array}{rlrl}
\frac{7 \pi}{12}=\frac{3 \pi}{12}+\frac{4 \pi}{12} & \cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
=\frac{\cos \left(\frac{\pi}{4}+\frac{\pi}{3}\right)}{4}+\frac{\pi}{3} & \cos \frac{\pi}{4} \cos \frac{\pi}{3}-\sin \frac{\pi}{4} \sin \frac{\pi}{3} \\
& =\frac{\sqrt{2}}{2}\left(\frac{1}{2}\right)-\frac{\sqrt{2}}{2}\left(\frac{\sqrt{3}}{2}\right) \\
\cos \frac{7 \pi}{12} & =\frac{\sqrt{2}-\sqrt{6}}{4}
\end{array}
$$

Ex. 2) Determine the exact value of $\tan \frac{5 \pi}{12}$.

$$
\begin{array}{rlrl}
\sin \quad \frac{5 \pi}{12} & =\frac{2 \pi}{12}+\frac{3 \pi}{12} \\
& =\frac{\pi}{6}+\frac{\pi}{4} & \tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
\text { or } \quad \begin{aligned}
\frac{5 \pi}{12} & =\frac{8 \pi}{12}-\frac{3 \pi}{12} \\
& =\frac{2 \pi}{3}-\frac{\pi}{4} \\
& \left.=\frac{\frac{\pi}{3}}{3}+\frac{\pi}{4}\right)
\end{aligned}=\frac{\tan \frac{\pi}{6}+\tan \frac{\pi}{4}}{1-\tan \frac{\pi}{6} \tan \frac{\pi}{4}} \\
& =\left(\frac{3}{3}\right) \\
& =\frac{1-\frac{\sqrt{3}}{3}(1)}{\frac{\sqrt{3}+3}{3}} \\
& =\frac{3-\sqrt{3}}{3} \\
&
\end{array}
$$

L3 Sum and Difference Identities. notebook

Pre-Calculus 12 Enriched Trigonometric Equations \& Identities
Ex. 3) Determine the exact value of $\underbrace{\frac{\alpha}{\sin \frac{3 \pi}{2} \cos \frac{5 \pi}{4}-\cos \frac{3 \pi}{2} \sin \frac{5 \pi}{4}} \text {. }}$, right hand side of $\sin (\alpha-\beta)$

$$
\begin{aligned}
& \sin (\alpha-\beta) \\
& \sin \left(\frac{3 \pi}{2}-\frac{5 \pi}{4}\right) \\
& \sin \left(\frac{6 \pi}{4}-\frac{5 \pi}{4}\right) \\
& \sin \frac{\pi}{4} \\
& \frac{\sqrt{2}}{2}
\end{aligned}
$$

Ex. 4) Determine the exact value of $\cos \frac{\pi}{12} \cos \frac{\beta}{3}+\sin \frac{\pi}{12} \sin \frac{\pi}{3}$.

$$
\begin{aligned}
& \cos (\alpha-\beta)=\cos \frac{\pi}{12} \cos \frac{\pi}{3}+\sin \frac{\pi}{12} \sin \frac{\pi}{3} \\
& \cos \left(\frac{\pi}{12}-\frac{\pi}{3}\right) \\
& \cos \left(\frac{\pi}{12}-\frac{4 \pi}{12}\right) \\
& \cos \left(-\frac{3 \pi}{12}\right) \\
& \cos \left(-\frac{\pi}{4}\right) \\
& \frac{\sqrt{2}}{2}
\end{aligned}
$$

Ex. 5) Express $\cos \left(\frac{\pi}{2}+x\right)$ as a function of x only.

$$
\begin{aligned}
\cos \left(\frac{\pi}{2}+x\right) & =\cos \frac{\pi}{2} \cos x-\sin \frac{\pi}{2} \sin x \\
& =\cos x-1 \sin x \\
& =-\sin x
\end{aligned}
$$

$$
\begin{aligned}
& \text { pg } 292 \\
& \# 1 a, e \\
& 2 a, c, e
\end{aligned}
$$

