Lesson 5 Infinite Geometric Series

An infinite geometric series has an infinite number of terms. As the terms get closer and closer to some real number, the series is said to be convergent and will converge to a real number.

This sum is called the sum to infinity and is denoted by S_{∞}.

Deriving the Sum Formula for an Infinite Geometric Series

$$
S_{\infty}=\frac{t_{1}}{1-r}
$$

where
t_{1} is the first term
r is the common ratio
$|r|<1$ or $-1<r<1$

Examples

1. Determine whether each infinite geometric series converges or diverges.
a) $\frac{1}{3}+\frac{1}{12}+\frac{1}{48}+\frac{1}{192}+\ldots$
b) $-4-8-16-32-\cdots$
c) $\frac{1}{10}-\frac{1}{100}+\frac{1}{1000}-\frac{1}{10000}+\ldots$
2. Determine the sum of each geometric series, if it exists.
a) $32+8+2+\frac{1}{2}+\ldots$
b) $100-10+1-\frac{1}{10}+\ldots$
c) $1+8+64+\ldots$
3. The sum of an infinite geometric series is 16 . If the common ratio is $\frac{1}{2}$, find the value of t_{1}.
4. The infinite series given by $1+3 x+9 x^{2}+27 x^{3}+\cdots$ has a sum of 4 . Determine the value of x.
5. A ball is dropped from 12 ft and rebounds $\frac{2}{3}$ of the distance from which it fell. Determine the total distance the ball travelled.
