Lesson 3 Geometric Sequences

A geometric sequence is formed by multiplying each term after the $1^{\text {st }}$ term by a common ratio, r, to determine the next term.

The common ratio, r, is any non-zero real number that can be determined by dividing any term by the preceding term.
$3,6,12,24 \ldots$ has a common ratio of \qquad
$3,6,12,24 \ldots$ is called an infinite geometric sequence
3, 6, 12, 24 is called a finite geometric sequence

Examples

1. Identify which of the following are geometric sequences.
a) $3,6,9,12, \ldots$
b) $2,4,8,16, \ldots$
c) $1,-2,4,-8,16, \ldots$
d) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$

Deriving the Formula for the \boldsymbol{n} th term of a Geometric Sequence

The general term or nth term in a geometric sequence is:
$t_{n}=t_{1} r^{n-1}$
where
t_{n} is the $n^{\text {th }}$ term
t_{1} is the first term
r is the common ratio
n is the number of terms
2. a) Determine the $10^{\text {th }}$ term of the given geometric sequence.
$2,-6,18,-54 \ldots$
b) Identify the sequence as convergent or divergent.
3. Given two terms in a finite geometric sequence are $t_{1}=7$, and $t_{5}=567$ and the last term of the sequence is 45927 , determine how many terms there are in the sequence.
4. Determine the value of x that would make $x, 2 x+2,3 x+3$ a geometric sequence.
5. Insert two geometric means between -2 and 128 .
6. A ball is dropped from a height of 3 m . After each bounce it rises to 75% of its previous height. Determine after how many bounces the ball will reach a height of approximately 40 cm .
7. In a geometric sequence the third term is 54 and the sixth term is -1458 . Determine the values of t_{1} and r.

