Lesson 2 Solving a System with Substitution

Substitution Method

1. Isolate one of the variables in one of the equations.
2. Substitute this expression into the other equation in order to solve for the other variable.
3. Substitute this value into either equation to solve for the second variable.
4. Check the solution in each of the original equations. (optional)

Example 1

Solve, algebraically.
(1) $3 x+4 y=15$
(2) $x-y=5 \longrightarrow$ isolate x in (2) $\left.\begin{array}{rl}x=\frac{y+5}{(5 u b \text { into } 11} \\ 3 x+4 y & =15\end{array}\right] \begin{array}{rl}3(x+5)+4 y & =15 \\ \text { Now onlyone } \\ \text { variable } \\ 3 y+75+4 y & =x 5 \\ 7 y & =0 \\ \text { solve for } y & y\end{array}$

Example 2

$$
\text { sub into (1) }\left\{\begin{array}{l}
x+y=8
\end{array}\right.
$$

$$
3 y+4+y=8
$$

$$
\begin{aligned}
& \text { sub } y=1 \text { into © } \\
& x+y=8 \\
& x+1=8 \\
&x=7) \\
& \\
& \sin (7,1)
\end{aligned}
$$

$y=1$

Example 3

2. Solve, algebraically.
$6 x \frac{x}{3}+\frac{y}{6}=\frac{1}{8} \quad$ multiply by 6 to get rid of fractions

$$
3 x+2 y=4
$$

$$
2 x+y=3
$$

$$
\begin{array}{r}
\text { sub } \begin{array}{r}
x=2 \text { into (2) } \\
3 x+2 y=4
\end{array}
\end{array}
$$

isolate y sub into (2)

$$
3(2)+2 y=4
$$

$$
y=-2 x+3
$$

$$
\begin{aligned}
& 3 x+2 y=4 \\
& 3 x+2(-2 x+3)=4
\end{aligned}
$$

$$
3 x-4 x+6=4
$$

$$
\begin{aligned}
-x & =-2 \\
x & =2
\end{aligned}
$$

Example 4

Solve, algebraically
(1)
$0.04 x-0.6 y=40$
(3) $x+y=6000$$\quad \begin{aligned} & \text { mut by } 100 \\ & x\end{aligned}$

$$
\frac{\operatorname{soth}}{(2,-1)}
$$

Isolate a variable with a coefficient
of 1

$$
\begin{aligned}
& 4 x-60(-x+6000)=4000 \\
& 4 x+60 x-360000=4000
\end{aligned}
$$

$$
64 x=364000
$$

$$
x=5687.5
$$

$$
\begin{aligned}
y & =-5687.5+6000 \\
& =312.5
\end{aligned}
$$

Pre-Calculus 10 Enriched Systems of Linear Equations

Example 5
Solve, algebraically.

$$
\begin{aligned}
& \text { already } \rightarrow y=3 x-4 \\
& \text { isolated } 6 x-2 y=8 \\
& 6 x-2(3 x-4)=8 \\
& 6 x-6 x+8=8^{\sqrt{ }} \\
& \text { or } \\
& 0=0^{-}
\end{aligned}
$$

\therefore sole
an infinite $\#$ of solis along the

$$
\begin{aligned}
\text { line } y= & 3 x-4 \\
& \text { (dependent system) }
\end{aligned}
$$

Example 6
Solve, algebraically.

$$
\begin{aligned}
& y=2 x-4 \\
& 2 x-y+1=0 \\
& 2 x-(2 x-4)+1 \neq 0 \\
& 2 x-2 x+4+1 \neq 0 \\
& 5 \geq 0
\end{aligned}
$$

no sol'n (inconsistent system)

