$S_{5}=170$
$S_{6}=225$
4. The sum of the first 5 terms of an arithmetic series is 170 . The sum of the first 6 terms is 225 . The common difference is 7 . Determine the first 4 terms of the series.

$$
\begin{aligned}
& S_{5}=170 \\
& s_{6}=225 \\
& d=7
\end{aligned} \begin{aligned}
& 55 \\
& d
\end{aligned} \quad \therefore t_{6}=55
$$

$$
S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2}
$$

$$
225=\frac{6\left(t_{1}+55\right)}{2}
$$

$$
225: 3\left(t_{1}+55\right)
$$

$$
\underbrace{\frac{t_{1}+t_{2}+t_{3}+t_{4}+t_{5},+t_{6}}{170+55}}_{225}
$$

$$
\begin{gathered}
75=t_{1}+55 \\
20=t_{1} \\
20+27+34+41+\ldots
\end{gathered}
$$

5. Determine the sum of all multiples of 8 between 100 and 500 .
first multiple of 8 is $104 \leftarrow t_{1}$
last multiple of 8 is $496 \leftarrow t_{n}$

$$
\begin{aligned}
t_{n} & =t_{1}+d(n-1) & S_{50} & =\frac{50(104+496)}{2} \\
496 & =104+8(n-1) & & =15000 \\
392 & =8(n-1) & & \\
49 & =n-1 & & \\
50 & =n & &
\end{aligned}
$$

Summation

If the summation expression is a linear function, then the summation is an arithmetic series.
ie.

$$
\begin{aligned}
& \sum_{k=1}^{10} 3 k+5 \quad \text { is an arithmetic series since } f(x)=\prod_{T}^{3 x}+5 \text { is linear. } \\
& \sum_{k=1}^{10} k^{2}+3 \quad \text { common difference } \\
& \text { not an arithmetic series since } f(x)=k^{2}+3 \text { is not linear. }
\end{aligned}
$$

is

Examples

1. Evaluate.

$$
\sum_{k=1}^{100} 2 k+1
$$

$t_{1}=2(1)+1$
$S_{100}=\frac{100(3+201)}{2}$
$=3$
$t_{n}=2(100)+1$
$=201$
$n=100$
2. Express the given arithmetic series in summation notation.

$$
\begin{aligned}
& 5+9+13+\cdots+137 \\
& \begin{array}{cc}
\uparrow & T \\
+1 & t_{n}
\end{array} \\
& d .4 \quad t_{n}=t_{1}+d(n-1) \\
& 137=5+4(n-1) \\
& \text { 132: } 4(n-1) \\
& 33=n-1 \\
& 34=n \\
& \text { or } \\
& \sum_{k=0}^{33} 4 k+5 \\
& \text { pg } 352 \text { \#|c,h, } 2 c, e, f \\
& \rightarrow a, c, d \\
& 11 \\
& 13
\end{aligned}
$$

