Lesson 2 Arithmetic Series

A series is a sum of the terms in a sequence.
An arithmetic series is the sum of the terms in an arithmetic sequence.
For example:
$1,4,7,10$ is an arithmetic sequence
$1+4+7+10$ is an arithmetic series
S_{n} is the partial sum of the first n terms of an arithmetic series.

The partial sum of n terms of an Arithmetic Series is given by

$$
S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2} \text { or } S_{n}=\frac{n\left[2 t_{1}+d(n-1)\right]}{2}
$$

where:
S_{n} is the partial sum of the first n terms
n is the number of terms
t_{1} is the first term
d is the common difference
t_{n} is the $n^{\text {th }}$ term

Examples

1. Determine the sum of the first 6 terms of the given arithmetic series.

$$
25+14+3-8-19-30
$$

2. Given an arithmetic series has $t_{1}=3$ and $d=-4$, determine S_{25}.
3. An arithmetic series has $S_{32}=1712, d=3$, and $t_{32}=100$. Determine the first 3 terms of the series.
4. The sum of the first 5 terms of an arithmetic series is 170 . The sum of the first 6 terms is 225 . The common difference is 7 . Determine the first 4 terms of the series.
5. Determine the sum of all multiples of 8 between 100 and 500.

Summation

If the summation expression is a linear function, then the summation is an arithmetic series.
ie.

$$
\sum_{k=1}^{10} 3 k+5 \quad \text { is an arithmetic series since } f(x)=3 x+5 \text { is linear. }
$$

$$
\sum_{k=1}^{10} k^{2}+3
$$

not an arithmetic series since $f(x)=k^{2}+3$ is not linear.

Examples

1. Evaluate.

$$
\sum_{k=1}^{100} 2 k+1
$$

2. Express the given arithmetic series in summation notation.

$$
5+9+13+\cdots+137
$$

