Lesson 2 Arithmetic Series

A series is a sum of the terms in a sequence. An arithmetic series is the sum of the terms in an arithmetic sequence.

For example:

1, 4, 7, 10 is an arithmetic sequence 1 + 4 + 7 + 10 is an arithmetic series S_n is the partial sum of the first *n* terms of an arithmetic series.

The partial sum of n terms of an Arithmetic Series is given by

$$S_n = \frac{n(t_1 + t_n)}{2}$$
 or $S_n = \frac{n[2t_1 + d(n-1)]}{2}$

where:

 S_n is the partial sum of the first *n* terms *n* is the number of terms t_1 is the first term *d* is the common difference t_n is the *n*th term

Examples

1. Determine the sum of the first 6 terms of the given arithmetic series. 25 + 14 + 3 - 8 - 19 - 30 2. Given an arithmetic series has $t_1 = 3$ and d = -4, determine S_{25} .

3. An arithmetic series has $S_{32} = 1712$, d = 3, and $t_{32} = 100$. Determine the first 3 terms of the series.

4. The sum of the first 5 terms of an arithmetic series is 170. The sum of the first 6 terms is 225. The common difference is 7. Determine the first 4 terms of the series.

5. Determine the sum of all multiples of 8 between 100 and 500.

Summation

If the summation expression is a linear function, then the summation is an arithmetic series.

ie.
$$\sum_{k=1}^{10} 3k + 5$$
 is an arithmetic series since $f(x) = 3x + 5$ is linear.

is

not an arithmetic series since $f(x) = k^2 + 3$ is not linear.

Examples

1. Evaluate.

 $\sum_{k=1}^{10} k^2 + 3$

$$\sum_{k=1}^{100} 2k + 1$$

2. Express the given arithmetic series in summation notation.

 $5 + 9 + 13 + \dots + 137$