Lesson 2 Arithmetic Series

A series is a sum of the terms in a sequence.
An arithmetic series is the sum of the terms in an arithmetic sequence.
An arithmetic sequence is: $1,4,7,10, \ldots$

An arithmetic series is: $1+4+7+10+\cdots$
S_{n}, is used to represent the sum of the first n terms of a series.

The partial sum of \boldsymbol{n} terms of an Arithmetic Series
For an arithmetic series with $1^{\text {st }}$ term, t_{1}, common difference, d, and $n^{\text {th }}$ term, t_{n}, the partial sum of the first n terms, S_{n}, is:

$$
S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2} \text { or } S_{n}=\frac{n\left[2 t_{1}+d(n-1)\right]}{2}
$$

Examples

1. Determine the sum of the first 6 terms of this arithmetic series:

25 । 14 । $3 \quad 8 \quad 1930 \ldots$
$t_{1} \quad t_{2} \quad t_{6}$

$S_{6}=-15$
or $\quad s_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2}$

$$
S_{6}=\frac{6(25-30)}{2}
$$

$=-15$
2. If an arithmetic series has $t_{1}=3$ and $d=-4$, determine S_{25}.

$$
\begin{aligned}
S_{n} & =\frac{n\left(2 t_{1}+d(n-1)\right)}{2} \\
S_{25} & =\frac{25(2(3)+(-4)(25-1))}{2} \\
& =\frac{25(-90)}{2} \\
& =-1125
\end{aligned}
$$

3. An arithmetic series has $S_{32}=1712, d=3$, and $t_{32}=100$. Determine the first 3 terms of the series.

$$
\begin{aligned}
S_{n} & =\frac{n\left(t_{1}+t_{n}\right)}{2} \\
1712 & =\frac{32\left(t_{1}+100\right)}{2} \\
1712 & =16\left(t_{1}+100\right) \\
107 & =t_{1}+100 \\
7 & =t_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore t_{1}=7, t_{2}=10, t_{3}=13 \\
& \text { Series } 7+10+13+\ldots
\end{aligned}
$$

4. The bottom row in a trapezoid had 49 cans. Each consecutive row had 4 fewer cans than the previous row. There were 11 rows in the trapezoid. Determine how many cans were in the trapezoid.

$$
\begin{aligned}
t_{1} & =49 \\
d & =-4 \\
n & =11
\end{aligned}
$$

$$
s_{n}=\frac{n\left(2 t_{1}+d(n-1)\right)}{2}
$$

$$
S_{11}=\frac{11(2149)+(-4)(11-1))}{2}
$$

$$
=\frac{11(58)}{2}
$$

$$
=319
$$

$$
\therefore \text { there were } 319 \text { cans }
$$

5. The sum of the first 5 terms of an arithmetic series is 170 . The sum of the first 6 terms is 225 . The common difference is 7 . Determine the first 4 terms of the series.

$$
\begin{aligned}
& S_{5}=170>\operatorname{add} \\
& S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2} \\
& S_{6}=225>{ }_{55}^{\text {add }} \\
& 225=\frac{6\left(t_{1}+55\right)}{2} \\
& 225=3\left(t_{1}+55\right) \\
& 75=t_{1}+55 \\
& 20=t_{1} \\
& \therefore 20+27+34+41
\end{aligned}
$$

Exercise 2 Arithmetic Series

1.) Determine the sum of the first 6 terms of this arithmetic series:
$15+11+7+3-1-5 \ldots$
(follow example 1) 30
2.) If an arithmetic series has $t_{1}=5$ and $d=4$, determine S_{20}. (follow example 2) 860
3.) If an arithmetic series has $t_{1}=7, t_{n}=79$ and $n=8$, determine S_{n}. 344
4.) An arithmetic series has $S_{40}=4940, d=-3$, and $t_{40}=65$. Determine the first 3 terms of the series. (follow example 3) 182,179, 176
5.) An auditorium has 8 seats in the first row. Each subsequent row has four more seats than the previous row. Determine how many seats are in the $50^{\text {th }}$ row of the auditorium. (follow example 4) 204
6.) Determine how many terms of the arithmetic series $1491+1484+1477+\ldots$

Are needed to give a sum of 0 . 427
7.) Determine the value of n for an arithmetic series where $t_{1}=8, t_{n}=68$ and $S_{n}=608 . \quad 16$
8.) The sum of the first five terms of an arithmetic series is 85 . The sum of the first six terms is 123. Determine the first four terms of the series.

$$
3,10,17,24
$$

Extra practice: Pg. 19; \#3a, d, 4a, 5a, 6a, 7a, c, 9, 10a, 12, 13

