Pre-Calculus 12 Solving Trig Equations Algebraically (Substitution and Double Angles)

Ex. 1) Solve: $\sqrt{2} \csc \theta=-5$ for $-180^{\circ} \leq$ © $\leq 180^{\circ}$
Recall:

$$
\begin{array}{ll}
\csc \theta & =\frac{-5}{\sqrt{2}} \\
\sin \theta & \Rightarrow-\frac{\sqrt{2}}{5} \\
\theta r & : \sin ^{-1}\left(\frac{\sqrt{2}}{5}\right) \\
\theta_{r} & =16.4299 \ldots \quad \text { degrees } \\
\text { mode }
\end{array}
$$

$0^{Q_{\text {solate }}}$ asce

$$
\overline{\csc \theta}=\frac{1}{\sin \theta}
$$

Qake the

$$
\sec \theta=\frac{1}{\cos \theta}
$$ reciprocal

$$
\cot \theta=\frac{1}{\tan \theta}
$$

(3) Find or

$$
\sin \theta<0
$$

in Q II, 佂
(4.) Find values

Quadrants
where $\sin 0<0$
(5)
not intervw, find coterminal anfles

Ex. 2) Solve: $2 \cos ^{2} \theta-3 \sin \theta=0$ for $0 \leq \theta \leq 2 \pi$
(1) Use diff trig fens

Recall

$$
\begin{aligned}
& 2\left(1-\sin ^{2} \theta\right)-3 \sin \theta=a \\
& 2-2 \sin ^{2} \theta-3 \sin \theta=0
\end{aligned}
$$

$$
0=2 \sin ^{2} \theta+3 \sin \theta-2
$$

p-4 $\quad 0:(2 \sin \theta-1)(\sin \theta+2)$
53
F $\frac{4}{2} \cdot \frac{-1}{1}$
$\sin \theta=\frac{1}{2}$
$\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
(3) Factor

identity

$$
\begin{aligned}
& \text { QIV } \\
& \theta=-16^{3} .570^{\circ},-16.430^{\circ} \\
& =196 \times 30^{\circ} \\
& \theta=360^{\circ}-16.4299 \quad \theta_{c}=196.430^{\circ}-360^{\circ} \\
& =-163.570^{\circ} \\
& \theta_{c}=343.57^{\circ}-360^{\circ} \\
& =-16.430^{\circ}
\end{aligned}
$$

Ex. 3) Solve for $\theta: 4 \sin ^{2} \theta-7 \cos \theta-2=0 \quad$ for $\quad 0 \leq \theta \leq 2 \pi$

$$
\begin{gathered}
4\left(1-\cos ^{2} \theta\right)-7 \cos \theta-2=0 \\
4-4 \cos ^{2} \theta-7 \cos \theta-2=0 \\
0=4 \cos ^{2} \theta+7 \cos \theta-2 \\
0=(4 \cos \theta-1)(\cos \theta+2) \\
\cos \theta=\frac{1}{4} \quad \cos \theta=-2 \\
\theta_{r}=\cos ^{-1}\left(\frac{1}{4}\right. \\
\theta_{r}=1.31812 \ldots \\
\text { NI } n \\
\text { QI } \theta=1.318 \\
\text { Q IV } \theta=2 \pi-1.31812 \ldots \\
\text { in }=4.965 \\
\text { QI, IV }
\end{gathered}
$$

$$
\cos \theta>0
$$

Double Angles
Ex. 4) Solve $\cos (2 \theta)=1$ for $0 \leq \theta \leq 2 \pi$

Replace $\cos 2 \theta$ with a double angle identity

$$
1-2 \sin ^{2} \theta=1
$$

$$
\begin{aligned}
& 0=2 \sin ^{2} \theta \\
& 0=\sin ^{2} \theta \\
& 0=\sin \theta \\
& \theta=0, \pi, 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta=1-\cos ^{2} \theta
\end{aligned}
$$

Also on formula sheet

$$
\begin{aligned}
& 1+\cot ^{2} \theta=\csc ^{2} \theta \\
& \tan ^{2} \theta+1=\sec ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta^{\text {dit use }} \text { fin } \\
& \cos 2 \theta=1-2 \sin ^{2} \theta \\
& \cos 2 \theta=2 \cos ^{2} \theta-1
\end{aligned}
$$

Recall:

$$
\text { If } \sin ^{2} \theta=1
$$

then $\sin \theta= \pm 1$

L6 Solving Trig Eqns Algebraically again. notebook

Ex. 5) Solve $2 \sin ^{2} x=\cos 2 x$ for $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$

Use
substitution
replace double

Combine
liketerms
Isolate $\sin ^{2} x$

$$
\sin ^{2} x=\frac{1}{4}
$$

$$
\sin x= \pm \frac{1}{2}
$$

$$
x=\frac{\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi_{1}}{6}}{\frac{n \pi}{\pi} \text { in given interval }}
$$

worksheet

$$
\begin{aligned}
& \text { \#1, } 2,3 c \\
& 5,6 a-c
\end{aligned}
$$

Assignment: Handout "Trig Equations Worksheet" \#ar, 2c, 3b, c, 4a, Sa, c, e, bb

