Pre-Calculus 12 Solving Logarithmic Equations

Steps:

1. Move all logs on one side and leave the constant (or 0) on other side. If all terms have logs, no need to isolate.
2. Combine all logs into a single log using log laws.
3. Change to exponential form

$$
\text { recall: } y=\log _{a} x \Rightarrow a^{y}=x
$$

4. Solve change to exponential form
5. Check your solution, extraneous root may exist
$>$ Logs are only defined for positive $(+)$ arguments, if a solution yields a negative $(-)$ argument, reject that solution.

Ex. 1) Solve
a) $\log _{3}(2 x)=\log _{3}(x+5)$
single \log on each side, arguments must be equal (same ides as solving exponential eqns

$$
\begin{aligned}
\therefore 2 x & =x+5 \\
x & =5
\end{aligned}
$$

check that $x=5$ doesn't make either argument negative $\underset{\text { ie }}{\operatorname{arguments}} 2 x$ and $x+5$ are the arguments
$\operatorname{sub} x=5 \quad 2(5)$
$x=$ in
both are positive $\therefore x=5$

Solving Logarithmic Equations.notebook

$$
\begin{aligned}
& \text { b) } \log _{3}(9 x)+\log _{3} x=4 \\
& \log _{3}\left(9 x^{2}\right)=4 \quad \text { Product law } \\
& 3^{4}=9 x^{2} \quad \text { Exponential form } \\
& 81=9 x^{2} \\
& 9: x^{2} \\
& \pm 3=x \text { careful } \\
& \text { * check ar guments } \\
& x=3 \\
& \text { c) } \log _{5}(3 x+1)+\log _{5}(x-3)=3 \\
& \log _{5}\left[\left(\frac{3 x+1)(x-3)}{x}\right]=3\right. \\
& \begin{array}{l}
\text { combine to a singh log, } \\
\text { using product law }
\end{array} \\
& \log _{5}\left(3 x^{2}-8 x-3\right)=3 \\
& 5^{3}=3 x^{2}-8 x-3 \quad \text { exponential form } \\
& 0=3 x^{2}-8 x-128 \\
& \begin{array}{ll}
p & -384 \\
s & -8 \\
F & -\frac{24}{3}, \frac{16}{1}
\end{array} \\
& 0=(3 x+16)(x-8) \\
& x=<\frac{16}{3} \quad x=8 \\
& \text { *check arguments } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{8 \pm \sqrt{64-4(3)(-128)}}{2(3)} \\
& =\frac{8 \pm \sqrt{1600}}{6} \\
& =\frac{8 \pm 40}{6} \\
& x=\frac{8+40}{6} \text { or } x=\frac{8-40}{6} \\
& \begin{array}{ll}
=\frac{48}{6} & =-\frac{32}{6} \\
=8 & =-\frac{16}{3}
\end{array}
\end{aligned}
$$

Solving Logarithmic Equations.notebook

d) $\log (6 x)=\log (x+6)+\log (x-1)$

$$
\log (6 x)=\log [(x+6)(x-1)]
$$

quotient law
exponential form (base e)

