Pre-Calculus 12 Solving Exponential Equations

Steps (Without a Common Base):

1. Apply logarithms to both sides.
2. Apply the laws of logarithms.
3. Solve for x
4. Evaluate logs with calculator (last step only)

Ex. 1) Solve for x :

$$
\begin{aligned}
& \text { a) } 4^{x}=12 \\
& \log 4^{x}=\log 12 \\
& x \cdot \log 4=\log 12 \\
& x=\frac{\log 12}{\log 4} \\
& x=1.792
\end{aligned}
$$

(1) Apply logs
(2) Power law
(3) Solve for x
*

$$
\begin{gathered}
\text { b) } \frac{2\left(3^{x}\right)=5}{\text { product }} \\
\log \left[2\left(3^{x}\right)\right]=\log 5 \\
\log 2+x \log 3=\log 5 \\
x \log 3=\log 5-\log 2 \\
x=\frac{\log 5-\log 2)}{\log 3} \\
x=0.834
\end{gathered}
$$

(1) Apply $\log s$
(2) Log laws (Product law and Power (aw)
(3) Isolate term with x
(4) Solve for x
c) $3^{x+1}=6^{x}$

$$
\begin{gathered}
\log 3^{x+1}=\log 6^{x} \\
(x+1) \log 3=x \log 6 \\
x \log 3+\log 3=x \log 6 \\
\log 3=x \log 6-x \log 3 \\
\log 3=x(\log 6-\log 3) \\
\frac{\log 3}{(\log 6-\log 3)}=x
\end{gathered}
$$

(1) Apply logs
(2) Power law (watch brackets)
(3) Distribute

$$
\text { Note } \log (x+1) \neq \log _{11} x+\log 1
$$

; legal!
(4) Collect terms with x
(5) Factor (GCF is x)
(b) Solve for x
$\underset{\text { brackets }}{\text { bras }} 1.585=x$
(7) Evaluate w/calc.

$$
\begin{aligned}
& \text { d) } 19^{x-5}=3^{x+2} \\
& \begin{aligned}
\log 19^{x-5} & =\log 3^{x+2} \\
(x-5) \log 19 & =(x+2) \log 3 \\
x \log 19-5 \log 19 & =x \log 3+2 \log 3 \\
x \log 19-x \log 3 & =2 \log 3+5 \log 19 \\
x(\log 19-\log 3) & =2 \log 3+5 \log 19 \\
x & =\underbrace{(2 \log 3+5 \log 19)}(\log 19-\log 3) \\
x & =9.166
\end{aligned}
\end{aligned}
$$

