Lesson 7 Solving Exponential Equations

Ex. 1) Solve.
a) $4^{x}=12$

$$
\begin{aligned}
& \log 4^{x}=\log 12 \quad \text { Apply log } \\
& x \log 4=\log 12 \quad \text { Power law } \\
& x=\frac{\log 12}{\log 4} \quad \text { Isolate } x
\end{aligned}
$$

Steps (Without a Common Base):

1. Apply logarithms to both sides.
2. Apply the laws of logarithms.
3. Solve for x
4. Evaluate logs with calculator (last step only)

$$
x=1.792 \quad \mathrm{calc}
$$

b) $2\left(3^{x}\right)=5$

$$
\log \left(2\left(3^{x}\right)\right)=\log 5
$$

$$
\log 2+x \log 3=\log 5 \quad \text { *Product and power law }
$$

$$
x \log 3=\log 5-\log 2
$$

$$
x=\frac{(\log 5-\log 2)}{\log 3}
$$

$$
x=0.834
$$

c) $3^{x+1}=6^{x}$

$$
\begin{array}{lll}
\text { ate } \log 3^{x+1} & =\log 6^{x} & \\
(x+1) \log 3 & =x \log 6 & \\
x \log 3+\log 3=x \log 6 & \text { collect terms with } x \\
\log 3 & =x \log 6-x \log 3 & \text { Factor } x \text { out } \\
\log 3 & =x(\log 6-\log 3) &
\end{array}
$$

$$
\begin{gathered}
\text { Need } \\
\text { brakets }
\end{gathered} \frac{\log 3}{(\log 6-\log 3)}=x
$$

Pre-Calculus 12 Enriched Exponents \& Logarithms
d) $19^{x-5}=3^{x+2}$

$$
\begin{array}{ll}
(x-5) \log 19=(x+2) \log 3 & \text { Power law } \\
x \log 19-5 \log 19=x \log 3+2 \log 3 & \text { Distribute } \\
x \log 19-x \log 3=2 \log 3+5 \log 19 & \text { Collect terms with } x \\
x(\log 19-\log 3)=2 \log 3+5 \log 19 &
\end{array}
$$

$$
x=\frac{(2 \log 3+5 \log 19)}{(\log 19-\log 3)}
$$

Brackets top and bottom

$$
x=9.166
$$

$$
\begin{aligned}
& \text { e) } 2(7)^{x}=3^{2 x-3} \\
& \log 2+x \log 7=(2 x-3) \log 3 \\
& \log 2+x \log 7=2 x \log 3-3 \log 3 \\
& \log 2+3 \log 3=2 \times \log 3-x \log 7 \\
& \log 2+3 \log 3=x(2 \log 3-\log 7) \\
& \frac{(\log 2+3 \log 3)}{(2 \log 3-\log 7)}=x \\
& 15.872=x
\end{aligned}
$$

*product and power law

