Pre-Calculus 12 Enriched Exponents & Logarithms

Lesson 7 Solving Exponential Equations

Ex. 1) Solve.

a)
$$4^x = 12$$
 $\log 4^x = \log 12$ Apply $\log 1$
 $\times \log 4 = \log 12$ Power law
 $\times : \frac{\log 12}{\log 4}$ Isolate \times
 $\times : 1.792$ Calc

Steps (Without a Common Base):

- 1. Apply logarithms to both sides.
- 2. Apply the laws of logarithms.
- 3. Solve for x
- Evaluate logs with calculator (last step only)

b)
$$2(3^{x}) = 5$$

 $\log (2(3^{x})) = \log 5$
 $\log 2 + x \log 3 = \log 5$ # Product and power law
 $x \log 3 = \log 5 - \log 2$
 $x = \frac{(\log 5 - \log 2)}{\log 3}$
 $x = 0.834$

c)
$$3^{x+1} = 6^x$$

distribute $\log 3^{x+1} = \log 6^x$
 $(x+1)\log 3 = x\log 6$
 $\times \log 3 + \log 3 = x\log 6$
 $\log 3 = x\log 6 - x\log 3$
 $\log 3 = x(\log 6 - \log 3)$

Factor x out

 $\log 3 = x\log 6 - \log 3$
 $\log 3 = x\log 6 - \log 3$
 $\log 3 = x\log 6 - \log 3$

L7 Solving Exponential Equations without a common base.notebook

Pre-Calculus 12 Enriched Exponents & Logarithms

d)
$$19^{x-5} = 3^{x+2}$$
 $(x-5)\log 19 = (x+2)\log 3$
 $\times \log 19 - 5\log 19 = x\log 3 + 2\log 3$
 $\times \log 19 - x\log 3 \cdot 2\log 3 + 5\log 19$
 $\times (\log 19 - \log 3) = 2\log 3 + 5\log 19$
 $\times (\log 19 - \log 3) = 2\log 3 + 5\log 19$
 $\times = \frac{(2\log 3 + 5\log 19)}{(\log 19 - \log 3)}$

Brackets to p

and bottom

 $\times = 9.166$

e)
$$2(7)^{x} = 3^{2x-3}$$

 $\log 2 + x \log 7 - (2x-3) \log 3$
 $\log 2 + x \log 7 - 2x \log 3 - 3 \log 3$
 $\log 2 + 3 \log 3 = 2x \log 3 - x \log 7$
 $\log 2 + 3 \log 3 = x (2 \log 3 - \log 7)$
 $(\log 2 + 3 \log 3) = x$
 $(2 \log 3 - \log 7)$
 $(5.872 = x)$
 $(2 \log 3 - \log 7)$
 $(3 \log 3$