Lesson 2 Solving Exponential Equations

Review Exponent Laws

$$
x^{n} \cdot x^{m}=x^{n+m}
$$

$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
$x^{n / m}=\sqrt[m]{x}{ }^{n}$

$$
\begin{array}{ll}
\frac{x^{n}}{x^{m}}=x^{n-m} & \left(x^{n}\right)^{m}=x^{n m} \\
x^{0}=1 & x^{-n}=\frac{1}{x^{n}}
\end{array}
$$

Steps to solve an exponential equation:

1. If the bases are the same (one base on each side) use one-to-one property;
> equate the exponents and solve
If $b^{m}=b^{n}$, then $m=n$
2. If bases are different;
, $>$ rewrite with a common base
$>$ equate the exponents and solve

Ex. 1) Solve for x.
a) $2^{5 x-1}=16$

$$
2^{5 x-1}=2^{4}
$$

$$
\therefore 5 x-1=4 \quad \text { Since } 2^{4} \text { can only equal } 2^{4} \text {, we can }
$$

$$
5 x=5
$$

$$
x=1
$$

$$
\text { equate exponents and solve for } x
$$

b) $4^{x+2} \cdot 64^{x}=1$

$$
4^{x+2} \cdot\left(4^{3}\right)^{x}=4^{0}
$$

$$
4^{x+2+3 x}=4^{0}
$$

$$
4^{4 x+2}=4^{0}
$$

$$
\therefore 4 x+2=0
$$

« Use exponent laws to get only one base on each side before equating exponents

$$
4 x=-2
$$

$$
x=-\frac{1}{2}
$$

Pre-Calculus 12 Enriched Exponents \& Logarithms
c) $3^{x}(27)=81^{2 x+1}$
$3^{x} \cdot 3^{3}=\left(3^{4}\right)^{2 x+1}$
$3^{x+3}=3^{8 x+4}$
$\therefore x+3=8 x+4$
$-1=7 x$
$-\frac{1}{7}=x$
d) $2^{3 x} \cdot 4^{x-1}=\left(\frac{1}{8}\right)^{x+2}$ $2^{3 x} \cdot\left(2^{2}\right)^{x-1}=\left(2^{-3}\right)^{x+2}$ $2^{3 x+2 x-2}=2^{-3 x-6}$

$$
2^{5 x-2}=2^{-3 x-6}
$$

$$
\therefore 5 x-2=-3 x-6
$$

$$
8 x=-4
$$

$$
x=-\frac{1}{2}
$$

e) $4^{x+1}=2^{x} \sqrt{2}$
$\left(2^{2}\right)^{x+1}=2^{x} \cdot 2^{\frac{1}{2}}$
$2^{2 x+2}=2^{x+\frac{1}{2}}$
f) $\left(\frac{1}{2}\right)^{-x^{2}}=8^{2 x-3}$
$\left(2^{-1}\right)^{-x^{2}}=\left(2^{3}\right)^{2 x-3}$
$2^{x^{2}}=2^{6 x-9}$
$\therefore 2 x+2=x+\frac{1}{2}$

$$
x=-\frac{3}{2}
$$

$$
\therefore x^{2}=6 x-9
$$

$$
x^{2}-6 x+9=0
$$

$$
(x-3)^{2}=0
$$

$$
x=3
$$

To solve for a missing base, raise both sides of the equation to the reciprocal power of the given exponent.

Ex. 2) Solve.

$$
\begin{aligned}
& \text { a.) } b^{4}=16 \\
& \sqrt[4]{b^{4}}=\sqrt[4]{16} \\
& b= \pm 2 \\
& \begin{aligned}
\sigma\left(b^{4}\right)^{\frac{1}{4}} & =16^{\frac{1}{4}} \\
b & = \pm 2
\end{aligned} \\
& \text { b.) } b^{\frac{2}{3}}=9 \\
& \left(b^{\frac{3}{3}}\right)^{\frac{3}{2}}=9^{\frac{3 / 2}{2}} \\
& \longleftarrow \text { raise both sides } \\
& \text { to the reciprocal } \\
& b=\sqrt{9}^{3} \\
& \text { power } \\
& b= \pm 27 \\
& \text { * Recall: } \\
& \begin{array}{l}
\text { Anything times } \\
\text { its reciprocal } \\
\text { will equal } 1
\end{array} \\
& \text { pg } \begin{array}{l}
159 \\
\$ \mid a, c, e,
\end{array} \\
& \text { 2,6 }
\end{aligned}
$$

