Lesson Four - Sine and Cosine Ratio to find Length

Example 1

Determine the length of $P Q$ to the nearest tenth of a centimetre.

$$
\begin{aligned}
& \text { (OHCCAH TOM } \\
& \sin R=\frac{\text { opp }}{p^{4 p}} \\
& \sin 67^{\circ}=\frac{(104}{104}(10.4) \\
& r=10.4 \sin 67^{\circ} \\
& r=9.6 \mathrm{~cm}
\end{aligned}
$$

Example 2

Determine the length of JK to the nearest tenth of a centimeter.

$$
\begin{array}{rlr}
\sin K & =\frac{\text { opp }}{h y p} \\
m \sin 65^{\circ} & =\frac{7.6}{p x} \cdot m & \text { or } \quad \sin 65^{\circ}=\frac{7 .}{m} \\
\frac{m \cdot \sin 65^{\circ}}{\sin 65^{\circ}} & =\frac{7.6}{\sin 65^{\circ}} \\
m & =\frac{7.6}{\sin 65^{\circ}} & m=\frac{26}{\sin 65^{\circ}} \\
m & =8.4 \mathrm{~cm} &
\end{array}
$$

Example 3

From a radar station, the angle of elevation of an approaching airplane is 32.5°. The horizontal distance between the plane and the radar station is 35.6 km . How far is the plane from the radar station to the nearest tenth of a kilometer?

$$
\begin{aligned}
& 50 H C A T O A \\
& \cos 32.5^{\circ}=\frac{a d j}{h y p} \\
& \cos 32.5^{\circ}=\frac{35.6}{d} \\
& \frac{\cos 32.5^{\circ} d}{\cos 32.5^{\circ}}=\frac{35.6}{\cos 32.5^{\circ}} \\
& d=\frac{35.6}{\cos 32.5^{\circ}} \\
& d=42.2 \mathrm{~km}
\end{aligned}
$$

Assignment: Pg. 101; 3 (a, c), 4 (ac), 5 (ac), 6, 7, 10, 11

