Pre-Calculus 11 Enriched Systems of Equations & Inequalities

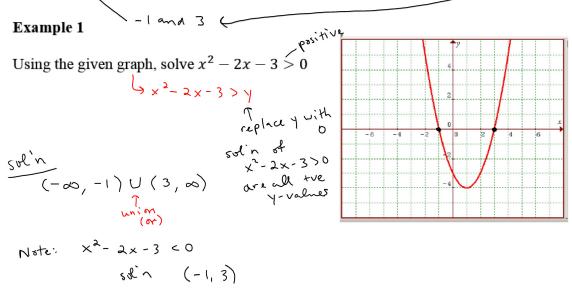
Lesson 3 Quadratic Inequalities in One Variable

Recall:

Inequalities:

<	means	less than
\leq	means	less than or equal to
>	means	greater than
\geq	means	greater than or equal to

When the equals sign in a quadratic equation is replaced with an inequality sign, *a quadratic inequality in one variable* is formed.


Quadratic Inequalities in One Variable

A quadratic inequality in one variable can be written in general form as:

 $ax^{2} + bx + c < 0 \qquad ax^{2} + bx + c \le 0$ $ax^{2} + bx + c > 0 \qquad ax^{2} + bx + c \ge 0$

Where *a*, *b*, and *c* are constants and $a \neq 0$.

The *x*-intercepts of the graph of a quadratic function are called the *critical values* of the corresponding quadratic inequality.

SI L3 Solving Quadratic Inequalities in One Variable.notebook

Now solve, algebraically $x^2 - 2x - 3 > 0$ x- 3 corresponding 1 + x2-2x-3=0 $\times +1$ + (x-3)(x+1)=0(+)(+)(x-3)(x+1) x= 3 ×= -1 test values 714 - 3 0 soln $(-\infty, -1) \cup (3, \infty)$ 2×+1=0 2x=-1 Example 2 Solve: $(2x + 1)(x - 5) \le 0$ 大 enegative (2x+1)(x-5)= 0 t 2×+1 x= 1/2 x=5 _ -+ x-5 Anot (2x+1)(x-5) (+) \bigcirc (+)Ð - 12 5 -2x2 +5x+12 50 05 2x2-5x-12 [-±, 5] Sol'n Example 3 Solve: $5x \ge 2(x^2 - 6)$ + $5x \ge ax^2 - ia$ x-4 - $0 \ge ax^2 - 5x - 12$ $0 \ge (2 \times + 3)(x - 4)$ prod \oplus A x= -3 x=4 2 or Pastire $(2x+3)(x-4) \leq 0$ 508'2 will have [-3.1] flip the inequality when divide 19:330 and Wakshoot 19:330 and Wakshoot # 1-3, 5-8 Challenge 4,9 by a tive

Pre-Calculus 11 Enriched Systems of Equations & Inequalities