Sequences and Series

Arithmetic Sequence: $t_n = t_1 + d(n-1)$

- t_1 is the first term
- *d* is the common difference
- *n* is the number of terms

Arithmetic Series:

$$S_n = \frac{n(t_1+t_n)}{2}$$
 or $\frac{n[2t_1+d(n-1)]}{2}$

• Used to find the sum of all the terms

Geometric Sequence: $t_n = t_1 r^{n-1}$

- t_1 is the first term
- *r* is the common ratio
- *n* is the number of terms

Geometric Series: $s_n = \frac{t_1(1-r^n)}{1-r}$

• Used to find the sum of all the terms

Infinite Geometric Series: $s_{\infty} = \frac{t_1}{1-r}$

- If an infinite geometric series converges (-1 < r < 1), then you can determine the sum.
- 1. Determine the 20^{th} term: -9, -3, 3, 9, ...

2. Determine the sum of the first 7 terms of an arithmetic sequence where: $t_1 = 5$, $t_7 = 17$

3. Find the 10th term: 2, -6, 18, ...

4. Find the sum of the first 12 terms: 3, 12, 48, ...

- 5. Find the sum, *if* it exists:
 - a) 27, -9, 3, -1,...

b) 4, -8, 16, -32,...