Lesson Five - Surface Area and Volume of a Sphere

Surface Area of a Sphere

Surface Area of a Sphere

The surface area, $S A$, of a sphere with radius r is: $S A=4 \pi r^{2}$

Example 1

The diameter of a softball is approximately 4 in. Determine the surface area of a softball to the nearest square inch.

$$
\begin{array}{rlrl}
8 A & =4 \pi r^{2} & & \therefore \text { radius }=2 \text { in } \\
& =4 \pi(2)^{2} \\
& =16 \pi \text { in }^{2} \longleftarrow \text { exact value } \\
\therefore \therefore \text { surface }^{\text {area }} \text { is } 50 \text { in }^{2} \leftarrow \operatorname{approx.} \begin{array}{l}
\text { valne } \\
\text { (to the nearest square } \\
\text { inch })
\end{array}
\end{array}
$$

Example 2

The surface area of a soccer ball is approximately 250 square inches.
the diameter of a soccer ball
Determine

$$
\begin{aligned}
& S A=4 \pi r^{2} \\
& 250=4 \pi r^{2} \\
& \frac{250}{(4 \pi)}=r^{2} \\
& \sqrt{\text { ans }}=r \\
& 4.46 \ldots=r \\
& \text { radius is } 4.46 \ldots \text { in } \\
& d=2 r \\
& =8.921 \mathrm{in}
\end{aligned}
$$

Volume of a Sphere

Volume of a Sphere

The volume, V, of a sphere with radius r is:

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
V=\frac{4 \pi r^{3}}{3}
$$

Example 3

The moon approximates a sphere with diameter 2160 mi . What is the approximate volume of the moon?

$$
\begin{aligned}
& V=\frac{4 \pi r^{3}}{3} \\
&=\frac{4 \pi(1080)^{3}}{3} \\
&=5276669286 \mathrm{mi}^{3} \\
& \approx 5300000000 \mathrm{mi}^{3} \\
& \text { or } 5.3 \times 10^{9} \mathrm{mi}^{3}
\end{aligned}
$$

When a sphere is cut in half, two hemispheres are formed.

Example 4

A hemisphere has radius 5.0 cm .
Determine
a) What is the surface area of the hemisphere

Determine

b) What is the volume of the hemisphere
a) $S A=\frac{1}{2}$ sphere + area ot a circle

$$
\begin{aligned}
& =\frac{5 p h e r e}{}+\frac{1}{2}\left(4 \pi r^{2}\right)+\pi r^{2} \leftarrow \text { could plug } r=5 \text { in here } \\
& =3 \pi r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =3 \pi(5)^{2} \longrightarrow 75 \pi \mathrm{~cm}^{2} \text { (exact value) } \\
& =235.619 \mathrm{~cm}^{2}
\end{aligned}
$$

b) $\quad V=\frac{4 \pi r^{3}}{3} \div 2 \quad$ or $\quad V=\frac{2}{3} \pi r^{3} \quad$ or $V=\frac{2 \pi r^{3}}{3}$

$$
\begin{array}{ll}
V=\frac{4 \pi(5)^{3}}{3} \div 2 & V=\frac{2}{3}+(5)^{3} \quad o r \\
V=261.799 \mathrm{~cm}^{3} & =\frac{2 \pi(5)^{3}}{3}
\end{array}
$$

Assignment: Pg 51; 3 (as), $5 \mathrm{a}, 8,10,12,17 \mathrm{a}$

