Lesson 3 Properties of Radical Functions

The function $y = \sqrt{f(x)}$ is the square root of the function y = f(x)

• $y = \sqrt{f(x)}$ is only defined for $f(x) \ge 0$

Characteristics Common to all Graphs of y = f(x) and $y = \sqrt{f(x)}$

Domain of $y = \sqrt{f(x)}$ consists only of all values in the domain of f(x) for which $f(x) \ge 0$.

Range of $y = \sqrt{f(x)}$ consists of the square roots of the values in the range of y = f(x) for which $\sqrt{f(x)}$ is defined.

Sketch the graph of y = x and $y = \sqrt{x}$

x	x = y	$y = \sqrt{x}$	
-2	~2	/	
-1	-1	/	
0	0	0	Tinvarian's
1/4	4	支	1,422
1	1	1 -	
4	4	2	

The value(s) y = 0 and y = 1 are invariant points if on the graph of y = f(x).

	Value of $y = f(x)$	Relative Location of Graph of $y = \sqrt{f(x)}$	
	f(x) < 0 - negative	The graph of $y = \sqrt{f(x)}$ is undefined.	
	f(x) = 0	The graph of $y = \sqrt{f(x)}$ and $y = f(x)$ intersect on the x -axis.	
	0 < f(x) < 1	The graph of $y = \sqrt{f(x)}$ will be above the graph of $y = f(x)$.	
	f(x) = 1	The graph of $y = \sqrt{f(x)}$ and $y = f(x)$ will intersect.	
	f(x) > 1	The graph of $y = \sqrt{f(x)}$ is below the graph of $y = f(x)$.	

Radical Functions.notebook

Pre-Calculus 12 Enriched Radical & Rational Functions

Ex. 1) For each graph of y = f(x) below,

- Sketch the graph of $y = \sqrt{f(x)}$
- State the domain and range of $y = \sqrt{f(x)}$

Take the square root of every y-value of f(x). There are key points to consider.

- The function $y = \sqrt{f(x)}$ doesn't exist where f(x) is negative
- Invariant points are where f(x) = 0 and where f(x) = 1
- Plot another point where y > 1 and transform that point

a)

D: (-0,6]

R: [0, 00)

b)

D: (-0,1] U[5,0)

R: [0, D)

c)

D: [-3,3]

R: [0,3]

d)

D: [-3, 4]

R: [0, 5]

Radical Functions.notebook

Pre-Calculus 12 Enriched Radical & Rational Functions

Note: Graphs of radical functions can still be sketched using transformations.

Ex. 2) Sketch the graphs of:

a)
$$y = 2\sqrt{x+3}$$
 (a) by a

b)
$$y = -\sqrt{2x+4}$$

$$y = -\sqrt{2(x+2)}$$

$$x =$$

Ex. 3) Solve, graphically. $\sqrt{x+5} = x+3$.

