L6 Applying Exponent Laws

Wednesday, October 12, 2022 2:10 PM

L6 Applying Exponent Laws

Lesson 6 Applying the Exponent Laws

Simplify.

1.
$$\left(\left(-\frac{3}{2}\right)^{-4}\right)^2 \cdot \left(\left(-\frac{3}{2}\right)^2\right)^3$$
 $\left(-\frac{3}{2}\right)^{-8} \cdot \left(-\frac{3}{2}\right)^6$ $\left(-\frac{3}{2}\right)^{-2}$ $\left(-\frac{3}{2}\right)^{-2}$ Evaluate.

Write an equivalent expression, using exponents.

3.
$$(\sqrt[5]{x^3y})^{10}$$
 $((x^3y)^{\frac{1}{5}})^{10}$ $(x^3y)^{\frac{2}{5}}$

Simplify.

4.
$$\frac{10^{-5}b^3}{2a^2b^{-2}}$$
5 $a^3 b^5$

5.
$$\frac{4a^{-2}b^{\frac{2}{3}}}{2a^{2}b^{\frac{1}{3}}}$$

$$2a^{-4}b^{\frac{1}{3}}$$

$$2b^{\frac{1}{3}}$$

6.
$$\left(\frac{100a}{25a^{5}b^{-\frac{1}{2}}}\right)^{\frac{1}{2}}$$

$$\left(4a^{-4}b^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

$$\left(4b^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

$$\frac{2b^{\frac{1}{4}}}{a^{\frac{1}{2}}}$$

7.
$$\left(\frac{6x^{-1}y^{4}}{3x^{-5}y^{-3}}\right)^{-2}$$

$$\left(2x^{4}y^{7}\right)^{-2}$$

$$\left(\frac{1}{2x^{4}y^{7}}\right)^{2}$$

$$\left(\frac{1}{2x^{4}y^{7}}\right)^{2}$$

$$\left(\frac{1}{2x^{4}y^{7}}\right)^{2}$$
8. $\left(\frac{4^{-2}x^{3}y^{-5}}{2^{-1}x^{-6}y^{-2}}\right)^{-\frac{1}{3}}$

$$\left(\frac{4^{2}x^{3}y^{3}}{2^{-1}x^{-6}y^{-2}}\right)^{3}$$

$$\left(\frac{2}{4^{3}}\times^{9}y^{-3}\right)^{-\frac{1}{3}}$$

$$\left(\frac{x^{9}}{8y^{3}}\right)^{-\frac{1}{3}}$$

$$\left(\frac{8y^{3}}{9}\right)^{\frac{1}{3}}$$