L5 Rational Exponents

Friday, October 7, 2022

8:51 AM

L5 Rational Exponents

Lesson 5 Rational Exponents

Complete each table below. Use a calculator to complete the second column.

VX		
X	x	$x^{\frac{1}{2}} = \sqrt{\chi}$
\ (1+2) Y* (1+2)	1	$1^{\frac{1}{2}} =$
1 4 (1:2)	4	$4^{\frac{1}{2}} = 2$
	9	3
	16	4
	25	5

x	$x^{\frac{1}{3}} = \sqrt[3]{X}$
1	$1^{\frac{1}{3}} =$
8	$8^{\frac{1}{3}} = \lambda$
27	3
64	4
125	5

Rational Number – A number that can be written in the form $\frac{m}{n}$ where m and n are integers $(n \neq 0)$.

To evaluate rational exponents we change from exponential form to radical form.

Square Root: $4^{\frac{1}{2}} = \sqrt{4} = 2$

Cube Root: $27^{\frac{1}{3}} = \sqrt[3]{27} = 3$

Rational Exponents: $a^{\frac{1}{n}} = \sqrt[n]{a}$

 $a^{\frac{1}{n}}$ exists if *n* is an odd integer: $\sqrt[3]{8} = 2$, $\sqrt[3]{-8} = -2$

 $a^{\frac{1}{n}}$ exists if *n* is even, only if *a* is positive: $\sqrt{4} = 2$, $\sqrt{-4} = \sqrt{4}$

Examples: Evaluating Powers of the Form $a^{\frac{1}{n}}$

Evaluate each power without using a calculator

1.
$$27^{\frac{1}{3}}$$
 $327 = 3$

2.
$$(-64)^{\frac{1}{3}}$$

$$\sqrt[3]{-64}$$

3.
$$\left(\frac{4}{9}\right)^{\frac{1}{2}}$$

$$\begin{array}{c} 3 \cdot \left(\frac{4}{9}\right)^{\frac{1}{2}} \\ \sqrt{\frac{4}{9}} \\ \sqrt{\frac{4}{9}} \\ \sqrt{\frac{4}{9}} \\ \sqrt{\frac{2}{3}} \end{array}$$

Try $25\frac{1}{4}$ 5 $(-8)^{\frac{1}{3}}$ -2

Extend $(a^m)^n$ to rational exponents.

$$4^{\frac{3}{2}} = (4^{\frac{1}{2}})^3 = (\sqrt{4})^3 = 2^3 = 8$$

$$a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m$$
 where $a \ge 0$ if n is even

Note: $\frac{m}{n}$ Must be in reduced form

Examples: Evaluating Powers of the Form $a^{\frac{m}{n}}$

4. Convert $\sqrt[4]{x^3}$ to exponential form.

5. Convert $7^{\frac{2}{3}}$ to radical form.

6. Determine exact value without using the calculator:

a)
$$32^{\frac{2}{5}}$$
 $(5\sqrt{3a})^{2}$
b) $0.04^{\frac{3}{2}}$
 $(\frac{4}{100})^{\frac{3}{2}}$
 $(\frac{1}{25})^{\frac{3}{2}}$
 $(\frac{1}{25})^{\frac{3}{2}}$
 $(\frac{1}{25})^{\frac{3}{2}}$

c)
$$(-32)^{0.4}$$
 $(-32)^{\frac{4}{10}}$ $(-32)^{\frac{3}{5}}$ $(5\sqrt{-32})^{\frac{3}{2}}$ $(-2)^{\frac{3}{2}}$ 4

d)
$$-27^{\frac{1}{3}}$$
 $-3\sqrt{27}$ different than $(-27^{\frac{1}{3}})$ -3 -3

e)
$$32^{\frac{3}{5}}$$

$$(\sqrt[5]{32})^{3}$$

$$2^{\frac{3}{5}}$$
f) $125^{\frac{2}{3}}$

f)
$$125^{\frac{2}{3}}$$
 $(\sqrt[3]{125})^{\frac{2}{3}}$ $5^{\frac{2}{3}}$