L5 Negative Exponents

Friday, October 7, 2022 8:50 AM

w L5 Negative Exponents

Lesson 5 Negative Exponents

Negative Exponent Law:

$$
\begin{aligned}
& a^{-n}=\frac{1}{a^{n}} \text { or } \frac{1}{a^{-n}}=a^{n} \quad \begin{array}{c}
\text { cross the line, } \\
\text { change the sign }
\end{array}
\end{aligned}
$$

Shortcut for fractions with negative exponents:

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
$$

Flip the fraction (reciprocal)
Switch sign of exponent.
Always simplify, leaving only positive exponents

Example 1

a.) $2^{-4} \quad \frac{1}{2^{4}} \quad \frac{1}{16}$
b.) $-2 x^{-2}-2 \cdot \frac{1}{x^{2}} \quad \frac{-2}{x^{2}}$

c.) $\left(-\frac{3}{4}\right)^{-3}\left(-\frac{4}{3}\right)^{3}-\frac{64}{27}$

* flip the fraction, expment is positive
d.) 0.3^{-4}

$$
\left(\frac{3}{10}\right)^{-4} \quad\left(\frac{10}{3}\right)^{4} \quad \frac{10000}{81}
$$

e.) $-(-2 x)^{-3}$
$-\left(\frac{1}{-2 x}\right)^{3}$
$-\frac{1}{(-2 x)^{3}} \quad-\left(\frac{1}{-8 x^{3}}\right) \quad \frac{1}{8 x^{3}}$

Example 2

Simplify leaving only positive exponents
a.) $8^{-\frac{2}{3}}$

$$
\frac{1}{8^{\frac{2}{3}}} \frac{1}{\sqrt[3]{8^{2}}} \quad \frac{1}{2^{2}} \quad \frac{1}{4}
$$

b.) $\left(x^{3} y^{-2} z\right)^{-4}$
$\left(\frac{x^{3} z}{y^{2}}\right)^{-4}\left(\frac{y^{2}}{x^{3} z}\right)^{4} \frac{y^{8}}{x^{12} z^{4}}$
c.) $\frac{-4 x^{-5} y}{2 x^{2} y^{6}} \quad \frac{-2 y}{x^{2} x^{5} y^{6}}$

ai) $\frac{-6 x^{3} y^{-2}}{12 x^{-4} y^{-52}}-\frac{1 x^{3} x^{4} y^{5}}{2 y^{2}}-\frac{x^{7} y^{3}}{2}$
$\begin{gathered}\text { or } \\ \text { arbtrex } \\ \text { exp }\end{gathered}-\frac{x^{7}}{2} y^{3}$
d.) $\frac{1}{5^{-1}} \quad 5$
e.) $x^{-3} y^{-2}$

$$
\frac{1}{x^{3} y^{2}}
$$

f.) $\frac{2 a^{2} b^{-2}}{3 c^{-2} d^{3}}$

$$
\frac{2 a^{2} c^{2}}{3 b^{2} d^{3}}
$$

g.) $\frac{2^{-3} a^{-5} b^{2}}{c^{-4}}$

$$
\frac{b^{2} c^{4}}{2^{3} a^{5}}
$$

$$
\frac{b^{2} c^{4}}{8 a^{5}}
$$

h.) $\frac{(x+y)^{-5}}{(x+y)^{3}}$

$$
\begin{aligned}
& (x+y)^{-5-3} \\
& (x+y)^{-8} \\
& \frac{1}{(x+y)^{8}}
\end{aligned}
$$

*Be careful, do not move a negative number, only a negative exponent. ie $-2 \neq \frac{1}{2}$

