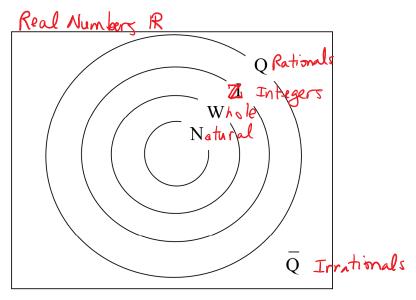
L2 Irrational Numbers


Monday, October 3, 2022

11:38 AM

L2 Irrational Numbers

Lesson 2 Irrational Numbers

^{**}As you move outward from the centre of the model, each set includes the ones inside it**

Natural Numbers N

- "Counting Numbers"
- 1, 2, 3, 4, ...

Whole Numbers W

- Include Natural Numbers plus 0
- 0, 1, 2, 3, ...

Integers Z

- Include Whole Numbers plus all positive and negative whole numbers
- ..., -3, -2, -1, 0, 1, 2, 3, ...

Rational Numbers

- "Fractional" numbers (both positive and negative)
- Terminating decimals (end somewhere)
- Repeating decimals (a digit or a pattern of digits)
- Square roots of perfect squares, cube roots of perfect cubes, etc

O' or \overline{O} **Irrational Numbers**

- Non-terminating decimals
- Non-repeating decimals, including π
- Square roots of non-perfect squares, cube roots of non-perfect cubes, etc.

Real Numbers \mathbb{R}

• Include all rational and irrational numbers

Example 1: Classifying Numbers

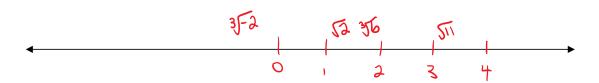
Classify each number as rational or irrational.

a.)
$$\sqrt{2}$$
 \overline{Q} (non-perfect square) b.) $\sqrt{10}$ \overline{Q}

c.)
$$\frac{-5}{9}$$
 Q (fraction)

c.)
$$\frac{-5}{9}$$
 Q (fraction) d.) $-\sqrt[3]{25}$ \overline{Q} (not a perfect cube)

e.) 0.101101110... Q (non-terminating) f.)
$$\sqrt[3]{8}$$
 Q (perfect cube)


g.) -3 Q (Integer) h.)
$$5.32\overline{32}$$
 Q (repeating decimal)
i.) 0 Q (Whole number) j.) $\sqrt{4}$ Q (perfect square)

j.)
$$\sqrt{4}$$
 Q (perfect square)

Example 2: Ordering Irrational Numbers on a Number line

Use a number line to order these numbers from least to greatest.

$$\sqrt[3]{-2}$$
, $\sqrt{2}$, $\sqrt{11}$, $\sqrt[3]{6}$ only negative value so will be the smallest

