Lesson 2 Multiplying Rational Expressions

Rational expressions can be multiplied in a similar way that rational numbers are multiplied.
Divide first $\frac{1}{5}_{\frac{3}{25}}^{\frac{1}{6}} 2 \frac{\frac{5}{6}}{10}$

Steps for Multiplying:

- Completely factor all numerators and denominators.
- State restrictions. Restrictions are based on the original expression, not the simplified expression.
- Divide the numerators and denominators by any common factors.
- State simplified final answer.

Examples

Simplify each expression and state restrictions.

1. $\frac{\frac{3}{2} b^{2}}{5 a} \times \frac{2 a}{2_{3}}$
$a \neq 0$

$$
\frac{2 b^{2}}{15}
$$

2. $(x+2) \cdot \frac{1}{2 x^{2}} \cdot \frac{5(x-4)}{3 x} \cdot \frac{5}{8 x(x+2)}$

$$
x \neq-2,0
$$

$$
\frac{5(x-4)}{12}
$$

3. $\frac{x^{2}+x-6}{x^{2}+2 x-15} \cdot \frac{x-3}{x-2}$

$$
\frac{x+3}{x+5}
$$

Pre-Calculus 11 Enriched Rational Expressions \& Equations

$$
\begin{aligned}
& \text { 4. } \frac{x^{2}-x-20}{x^{2}-6 x} \cdot \frac{x^{2}-12 x+36}{x^{2}+9 x+20} \\
& \frac{(x-5)(x+4)}{x(x-x)} \cdot \frac{(x-6)(x-6)}{(x+4)(x+5)} \\
& \frac{(x-5)(x-6)}{x(x+5)}
\end{aligned}
$$

5. $\frac{4-x^{2}}{5 x-10} \cdot \frac{x-5}{3 x-15}$

6. $\frac{3 x^{2}-5 x-2}{6 x} \cdot \frac{4 x^{2}-8 x}{x^{2}-4 x+4}$

$\frac{-\left(x^{2}-4\right)}{5 x-10} \cdot \frac{x-5}{3 x-15}$
$x \neq 2,5$
Diff of squares PSF

$$
\frac{-(x+2)(x-2)}{5(x-2)} \cdot \frac{x+5}{3(x-5)}
$$

$$
\frac{-(x+2)}{15}
$$

