Radicals and Rationals

January 2014

Question 27
a) 3 marks
b) 1 mark
a) Sketch the graph of the function $y=\sqrt{-x}+1$.

Solution

1 mark for general shape
1 mark for horizontal reflection
1 mark for vertical shift
3 marks
b) Determine the value of x when $y=3$.

Given the graph of $y=f(x)$ below,

Sketch the graph of $y=\sqrt{f(x)}$.

Solution

1 mark for restricting the domain
$1 / 2$ mark for graph above $y=f(x)$ over the range $[0,1]$
$1 / 2$ mark for graph below $y=f(x)$ over the range [1, 2]

2 marks

Write the equation of the horizontal asymptote for the function $f(x)=\frac{x-3}{x-2}$.

Solution

$y=1 \quad 1$ mark for equation of horizontal asymptote
1 mark

Question 36
2 marks
Identify the domain and range of the following function:

$$
f(x)=\frac{3}{x^{2}+1}
$$

Solution

Domain: $\{x \in \mathbb{R}\}$
1 mark for domain
or
$(-\infty, \infty)$

Range: $\{y \in \mathbb{R} \mid 0<y \leq 3\}$
or
$(0,3]$

1 mark for range
2 marks

Sketch the graph of the following function:

$$
f(x)=\frac{x-2}{(2 x-3)(x-2)}
$$

Solution

$$
\begin{aligned}
f(x) & =\frac{x-2}{(2 x-3)(x-2)} \\
& =\frac{1}{2 x-3} \text { with a point of discontinuity at } x=2
\end{aligned}
$$

point of discontinuity. $f(2)=1$
\therefore there is a point of discontinuity at $(2,1)$

$$
\begin{aligned}
y \text {-intercept: } f(0) & =\frac{0-2}{(2(0)-3)(0-2)} \\
& =-\frac{2}{6} \\
& =-\frac{1}{3}
\end{aligned}
$$

1 mark for horizontal asymptote at $y=0$
1 mark for vertical asymptote at $x=\frac{3}{2}$
$1 / 2$ mark for graph left of vertical asymptote
$1 / 2$ mark for graph right of vertical asymptote
1 mark for point of discontinuity at $(2,1)$; $(1 / 2$ mark
for $x=2,1 / 2$ mark for $y=1$)

4 marks

June 2013

Question 34

2 marks

The graph of a rational function, $f(x)$, has a point of discontinuity when $x=2$ and an asymptote when $x=4$. Write a possible equation for $f(x)$.

Solution

A possible equation is:

$$
f(x)=\frac{x-2}{(x-2)(x-4)}
$$

1 mark for $\frac{x-2}{x-2}$ (point of discontinuity when $x=2$)
1 mark for $x-4$ in denominator (asymptote when $x=4$)

2 marks

Question 37

Sketch the graph of $y=\sqrt{x+1}-2$ and verify that the value of the x-intercept is the same as the solution to the equation $\sqrt{x+1}-2=0$.

Solution

$$
\begin{aligned}
\sqrt{x+1} & =2 \\
(\sqrt{x+1})^{2} & =(2)^{2} \\
x+1 & =4 \\
x & =3
\end{aligned} \quad \begin{aligned}
& \sqrt{x+1}-2=0 \\
& \sqrt{3+1}-2=0 \\
& \sqrt{4}-2=0 \\
& 0=0
\end{aligned}
$$

$$
1 \text { mark for general shape }
$$

$$
1 / 2 \text { mark for horizontal shift }
$$

$$
1 / 2 \text { mark for vertical shift }
$$

$$
1 \text { mark for verification }
$$

Sketch the graph of the function $f(x)=\frac{x^{2}}{x^{2}-x}$.

Solution

1 mark for vertical asymptote at $x=1$
1 mark for horizontal asymptote at $y=1$
1 mark for point of discontinuity at $(0,0)$ or a point of discontinuity consistent with graph
$1 / 2$ mark for graph left of vertical asymptote
$1 / 2$ mark for graph right of vertical asymptote
4 marks

