## Lesson 5 Solving Radical Equations

A radical equation is an equation that contains at least one radical with a variable in the radicand. A solution to a radical equation is called the root of the equation.

## Steps to Solving Radical Equations

$$
\begin{aligned}
& \text { Liny value that makes } \\
& \text { an eqn true. }
\end{aligned}
$$

1. Isolate the radical with the variable in the radicand
2. Square both sides of the equation
3. Check your solutions or use restrictions to identify extraneous roots.

## Examples

Solve each equation.

1. $(\sqrt{2 x})^{2}-4^{2}$
Square both sides

$$
\begin{aligned}
& 2 x=16 \\
& x=8
\end{aligned}
$$


use restrictions

$$
\frac{\text { check: }}{\sqrt{2(8)}}=4 \text { or }
$$

$$
2 x \geq 0
$$

$$
x \geq 0
$$

$$
\sqrt{16}: 4
$$

$$
4: 4
$$

$$
8 \geq 0
$$

2. $(3 \sqrt{x})^{2}=4^{2}$

$$
\begin{aligned}
9 x & =16 \quad \text { square both sides } \\
x & =\frac{16}{9}
\end{aligned}
$$



$$
\begin{gathered}
\text { square } \\
\text { both sides }
\end{gathered} x+1=100
$$

4. $4 \sqrt{x}+3=5 \sqrt{x}+1$.

$$
\begin{aligned}
& 2=\sqrt{x} \\
& 4=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } 2 \sqrt{x+1}-7=13 \\
& 2 \sqrt{x+1}=20 \\
& \sqrt{x+1}=10 \\
& x=99
\end{aligned}
$$

check

$$
\begin{aligned}
2 \sqrt{99}+1 & -7=13 \\
2(10)-7 & =13 \\
13 & =136
\end{aligned}
$$

combine like terms

$$
\begin{aligned}
& x \geq 0 \\
& 4 \geq 0
\end{aligned}
$$

Use check

$$
\begin{aligned}
\sqrt{2(-2)-5} & =\sqrt{-2-7} \\
\sqrt{-9} & =\sqrt{-9}
\end{aligned}
$$

Example 2
Show that $\sqrt{2 x-5}=\sqrt{x-7}$ has an extraneous root.
$\phi$ we cant square or restrictions number


## Example 2

Solve.

1. $\sqrt{x+3}+5=0$

2. $\sqrt{2 x+7}-x=-4$

$$
(\sqrt{2 x+7})^{2}=(x-4)^{2}
$$

$$
2 x+7=x^{2}-8 x+16
$$

$p q$

$$
0=x^{2}-10 x+9
$$

$s-10$
$F-9,-1$

$$
\begin{aligned}
& 0=(x-1 x x-9) \\
& x-1=0 x-9=0 \\
& x=1 x=9 \\
& \text { reject }
\end{aligned}
$$

3. $\sqrt{2 x+3}-\sqrt{x+2}=2$

$$
\begin{aligned}
& (\sqrt{2 x+3})^{2}=(2+\sqrt{x+2})^{2} \\
& 2 x+3=4+4 \sqrt{x+2}+x+2 \\
& (x-3)^{2}=(4 \sqrt{x+2})^{2} \\
& x^{2}-6 x+9=16(x+2) \\
& x^{2}-6 x+9=16 x+32 \\
& x^{2}-22 x-23=0 \\
& \text { check } \\
& (x-23)(x+1)=0 \\
& \sqrt{2(23)+3}=2+\sqrt{23+2} \\
& x=23 \quad x=-1 \\
& \text { square again } \\
& \begin{array}{l}
7=2+5 \\
7=7
\end{array} \\
& \sqrt{2(-1)+3}=2+\sqrt{-1+2} \\
& 1 \neq 3
\end{aligned}
$$



