Lesson 4 Dividing Radicals

Rationalizing the Denominator (Monomials)

The process of changing the denominator from a radical (irrational number) to a rational number is called rationalizing the denominator. This does not change the value of the expression, only the form of the expression since when a fraction is multiplied by 1 , its value does not change.

For example, $\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
The denominator is now a rational number and $\frac{2 \sqrt{3}}{3}$ is considered in simplest form.

Examples

Express in simplest form.

1. $\frac{5}{\sqrt{2}}$
2. $\frac{4}{2 \sqrt{7}}$
3. $\frac{\sqrt{12}}{\sqrt{x}}$
4. $\frac{5 \sqrt{7}+3}{\sqrt{7}}$
5. $\frac{6 \sqrt{2}-4 \sqrt{3}}{\sqrt{18}}$

Rationalizing the Denominator (Binomials)

To rationalize a denominator containing a binomial we use a difference of squares. The expressions $(a+b)$ and $(a-b)$ are conjugates and have a product that is a difference of squares.
$\sqrt{3}+\sqrt{2}$ has a conjugate of $\sqrt{3}-\sqrt{2}$
$2 \sqrt{3}-3 \sqrt{5}$ has a conjugate of $2 \sqrt{3}+3 \sqrt{5}$

Examples

Simplify the following radicals

$$
\text { 1. } \frac{2}{\sqrt{5}-\sqrt{2}}
$$

2. $\frac{\sqrt{2}+1}{\sqrt{2}-1}$
