Lesson 4 Dividing Radicals

Rationalizing the Denominator (Monomials)

The process of changing the denominator from a radical (irrational number) to a rational number is called rationalizing the denominator. This does not change the value of the expression, only the form of the expression since when a fraction is multiplied by 1, its value does not change.

For example,
$$\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

The denominator is now a rational number and $\frac{2\sqrt{3}}{3}$ is considered in simplest form.

Examples

Express in simplest form.

1.
$$\frac{5}{\sqrt{2}}$$

$$2. \quad \frac{4}{2\sqrt{7}}$$

3.
$$\frac{\sqrt{12}}{\sqrt{x}}$$

4.
$$\frac{5\sqrt{7}+3}{\sqrt{7}}$$

$$5. \quad \frac{6\sqrt{2}-4\sqrt{3}}{\sqrt{18}}$$

Rationalizing the Denominator (Binomials)

To rationalize a denominator containing a binomial we use a difference of squares. The expressions (a + b) and (a - b) are conjugates and have a product that is a difference of squares. $\sqrt{3} + \sqrt{2}$ has a conjugate of $\sqrt{3} - \sqrt{2}$ $2\sqrt{3} - 3\sqrt{5}$ has a conjugate of $2\sqrt{3} + 3\sqrt{5}$

Examples

Simplify the following radicals

$$1.\frac{2}{\sqrt{5}-\sqrt{2}}$$

$$2.\frac{\sqrt{2}+1}{\sqrt{2}-1}$$