Lesson 2 Adding \& Subtracting Radicals

The strategies for adding/subtracting polynomials can be used to add/subtract radicals. Like terms or like radicals in a sum or difference of radicals have the same radicand and the same index.

$$
\begin{aligned}
& \frac{\sqrt{2}+2 \sqrt{7}+3 \sqrt{2}}{4 \sqrt{2}}+2 \sqrt{7}
\end{aligned}
$$

(numbers in front of the radicals)
*If the radicands are the same, we add the coefficients.
radical stays the same

Examples

1. $6 \sqrt{2}-4 \sqrt{2}+1 \sqrt{2}-3 \sqrt{2}$

2. $\underline{4 \sqrt{10}}-2 \sqrt{5}+3 \sqrt{10}+\underline{5 \sqrt{5}}$

$$
7 \sqrt{10}+3 \sqrt{5}
$$

3. $\sqrt{18}-\sqrt{2}$

$$
3 \sqrt{2}-\sqrt{2}
$$

$2 \sqrt{2}$

$$
\text { 4. } \begin{gathered}
\sqrt{63}+\sqrt{40}-\sqrt{90}-\sqrt{28} \\
3 \sqrt{7}+2 \sqrt{10}-3 \sqrt{10}-2 \sqrt{7} \\
\sqrt{7}-\sqrt{10}
\end{gathered}
$$

$$
\begin{aligned}
& 2^{2}=4 \\
& 3^{2}: 9 \\
& 4^{2}: 16 \\
& 5^{2}=25
\end{aligned}
$$

Identify the values of the variables for which each radical is defined, then simplify.
5. $6 \sqrt{x}+5 \sqrt{x}-\sqrt{x}$

$$
x \geq 0
$$

$$
10 \sqrt{x}
$$

$$
\begin{gathered}
\text { 6. } \sqrt[3]{27 p^{3} q}+8 \sqrt[3]{p^{3} q} \\
3 p \sqrt[3]{q}+8 p \sqrt[3]{q} \\
11 p^{3} \sqrt{q}
\end{gathered}
$$

