Lesson 1 Simplifying Radical Expressions

Recall:

Recall: Multiplication Property of Radicals:
$\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$,
Where n is a natural number, and a and b are real numbers

Examples
Simplify the following radicals.

1. $\sqrt{50 x^{7}}$
2. $\sqrt[3]{24 x^{10} y^{3}}$

Similarly to the Multiplication Property of Radicals, we can simplify radicals using the division property of radicals.

Equivalent expressions for any number have the same value.

- $\sqrt{\frac{16}{9}}$ is equivalent to $\frac{\sqrt{16}}{\sqrt{9}}$ because:

$$
\begin{aligned}
\sqrt{\frac{16}{9}} & =\sqrt{\frac{4}{3} \cdot \frac{4}{3}} & \text { and } & \frac{\sqrt{16}}{\sqrt{9}}
\end{aligned}=\frac{\sqrt{4 \cdot 4}}{\sqrt{3 \cdot 3}}
$$

A similar result is true for any index, n.

Division Property of Radicals:

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \text {, where } n \in \mathbb{N} \text { and } a, b, \sqrt[n]{a}, \sqrt[n]{b} \in \mathbb{R}, b \neq 0
$$

Examples

3. Write $\sqrt[3]{-\frac{40}{81}}$ as a mixed radical.
4. Write $-2 \sqrt[3]{\frac{3}{4}}$ as an entire radical

Examples
 Simply, if possible. State the permissible values of the variable.

5. $\sqrt{5 a^{2}}$
6. $\sqrt{-27 b^{5}}$
7. $\sqrt[4]{7 z}$
8. $\sqrt[3]{24 x^{7}}$
