Lesson 1 Properties of a Quadratic Function

A quadratic function is any function that can be written in the form $y=a x^{2}+b x+c$, where a, b and c are real numbers and $a \neq 0$. This is called the general form of a quadratic function.

$$
\text { Recall: quadratic } \frac{\text { eqn }}{a x^{2}}+b x+c=0
$$

Shape of graph: parabola opening up or down.
Vertex: highest or lowest point, known as the maximum/ minimum point Coordinates are $(\underline{h, k})$ when written in transformational form $y=a(x-h)^{2}+k$

Axis of symmetry: the vertical line through the vertex of a parabola, written as $\underbrace{x=h}$ The parabola is symmetrical about this line.

Given $y=a x^{2}$,
if a is positive, the parabola opens up and its vertex is a minimum point.

if a is negative, the parabola opens down and its vertex is a maximum point.

Domain: all values of $x,(-\infty, \infty)$
Range: $[k, \infty)$ or $(-\infty, k]$

$$
\text { opens opens } \quad \text { down }
$$

The \boldsymbol{y}-intercept of a quadratic function is the value of y when $x=0$.
The x-intercepts of the graph of a quadratic function, $y=a x^{2}+b x+c$ are called the zeros of the function because they are the values of x when the function is 0 ; that is, when $y=0$.

The zeros of the function are the roots of the related quadratic equation $a x^{2}+b x+c=0$.

Example 1

a) Given the graph below, identify:
i) the x - and y-intercepts
ii) the coordinates of the vertex
iii) the equation of the axis of symmetry
iv) the domain of the function
v) the range of the function
vi) the maximum/minimum value

i) x-int -2 and 2
y-ink 4
i k
ii) $(0,4)_{L}$
iii) $x=0$
iv) $(-\infty, \infty)$
v) $(-\infty, 4]$
vi) $m a x$ @ 4
k

Pre-Calculus 11 Quadratic Functions

Example 2

b) Given the graph below, identify:
i) the x - and y-intercepts
ii) the coordinates of the vertex
iii) the equation of the axis of symmetry
iv) the domain of the function
v) the range of the function
vi) the maximum/minimum value

i) x-int 1 and 5

iii) $x=\frac{5}{3}$
iv) $(-\infty, \infty)$
v) $\left[\begin{array}{c}k \\ -4, \infty \\ k\end{array}\right.$
vi) $\min @-4$

Example 3

Determine the y-intercept of quadratic function, $y=-2 x^{2}+5 x-8$.

$$
\sin b x=0
$$

$$
\begin{aligned}
& y=-2 x^{2}+5 x-8 \\
& y=-2(2)^{2}+5(2)-8 \\
& y=-8
\end{aligned}
$$

Assignment: Pg. 257; 4, 5, handout

