Pre-Calculus 11 Quadratic Functions

Lesson 1 Properties of a Quadratic Function

A quadratic function is any function that can be written in the form $y = ax^2 + bx + c$, where a, b and c are real numbers and $a \neq 0$. This is called the general form of a quadratic function. Recall: quadratic eqn $ax^2+bx+c=0$

Shape of graph: parabola opening up or down.

Vertex: highest or lowest point, known as the maximum/minimum point Coordinates are (h, k) when written in transformational form $y = a(x - h)^2 + k$

Axis of symmetry: the vertical line through the vertex of a parabola, written as x = hThe parabola is symmetrical about this line.

Given $y = ax^2$, if *a* is positive, the parabola opens up and its vertex is a minimum point.

if a is negative, the parabola opens down and its vertex is a maximum point.

Domain: all values of x, $(-\infty, \infty)$

Range: $[k, \infty)$ or $(-\infty, k]$

-

Pre-Calculus 11 Quadratic Functions

The *y*-intercept of a quadratic function is the value of *y* when x = 0.

The x-intercepts of the graph of a quadratic function, $y = ax^2 + bx + c$ are called the *zeros of the function* because they are the values of x when the function is 0; that is, when y = 0.

The zeros of the function are the <u>roots</u> of the related quadratic equation $ax^2 + bx + c = 0$.

Example 1

- a) Given the graph below, identify:
 - i) the *x* and *y* intercepts
 - ii) the coordinates of the vertex
 - iii) the equation of the axis of symmetry
 - iv) the domain of the function
 - v) the range of the function
 - vi) the maximum/minimum value

Pre-Calculus 11 Quadratic Functions

Example 2

- b) Given the graph below, identify:
 - i) the *x* and *y* intercepts
 - ii) the coordinates of the vertex
 - iii) the equation of the axis of symmetry
 - iv) the domain of the function
 - v) the range of the function
 - vi) the maximum/minimum value

Example 3

Determine the *y*-intercept of quadratic function, $y = -2x^2 + 5x - 8$.

sub x = 0 $y = -2x^{2} + 5x - 8$ $y = -2(2)^{2} + 5(2) - 8$ y = -8

Assignment: Pg. 257; 4, 5, handout