L8 Solving Quadratic Eqns by Factoring

Monday, September 26, 2022 1:12 PM

w L8 Solving Quadratic Eqns by Factoring

Lesson 8 Solving Quadratic Equations Using Factoring

A quadratic equation is any equation which can be written in the form $a x^{2}+b x+c=0$ where $a \neq 0$ and a, b, and c are constants.
ie. $x^{2}-5 x-45=0$ contains a quadratic or second-degree term (a term with a variable that is squared) and no term of higher degree. This is an example of a quadratic equation because it only has one variable and contains an equals sign.
Note: $x^{2}-5 x-45$ is a quadratic expression.

Solving Quadratic Equations

One strategy is to solve using factoring and the zero product property.
Zero product property: If the product of two factors is 0 , then one or both factors must be equal to 0 .
If $a b=0$, then either $a=0$ and/or $b=0$.
It follows that if $(x+b)(x+d)=0$, then $(x+b)=0$, and/or $(x+d)=0$
The solutions to a quadratic equation are called the roots (values which make the equation true) of the equation. The roots of a quadratic equation are the same values as the x-intercepts of the graph of $y=a x^{2}+b x+c$, or the zeros of the corresponding quadratic function, $y=a x^{2}+b x+c$.

Types of Solutions

2 Solutions

1 Solution

0 Solutions

Example 1: Solving by Factoring

Solve each equation, then verify the solution.

$$
\begin{aligned}
& \text { a.) }(3 x+1)(x-6)=0 \\
& 3 x+1=0 \quad x-6=0 \\
& 3 x=-1 \quad x=6 \\
& x=-\frac{1}{3}
\end{aligned}
$$

Set each factor equal to 0 and solve for x
b.) $x^{2}-x-56=0$

$$
\begin{array}{ll}
(x-8)(x+7)=0 \\
x-8=0 & x+7=0 \\
x=8 & x=-7
\end{array}
$$

Example 2

Solve, by factoring.
a.) $\frac{3 x^{2}}{3}+\frac{75}{3}=-\frac{30 x}{3}$

$$
\begin{gathered}
x^{2}+25=-10 x \\
x^{2}+10 x+25=0 \\
(x+5)^{2}=0 \\
x+5=0 \\
x=-5
\end{gathered}
$$

$$
\begin{aligned}
& \text { b.) } \frac{5 x^{2}}{5}=-\frac{20 x}{5} \quad \text { Never divide by a variable } \\
& \begin{array}{l}
x^{2}=-4 x \\
x^{2}+4 x=0
\end{array} \\
& \begin{array}{c}
x^{2}=-4 x \\
x^{2}+4 x=0
\end{array} \\
& G C F \quad x(x+4)=0 \\
& x=0 \quad x=-4 \longleftarrow \text { roots of the en } \\
& \text { c.) } x(3 x-20)=-12 \\
& \begin{array}{l}
3 x^{2}-20 x+12=0 \\
(3 x-2)(x-6)=0
\end{array} \\
& p 36 \quad(3 x-2)(x-6)=0 \\
& S-20 \\
& \text { F } \frac{-18}{3}, \frac{-2}{1} \\
& -6-2 \\
& \text { Never divide by a variable } \\
& \text { because could be dividing by } 0 \\
& \text { unintentionally (*cant divide by } 0 \text {) } \\
& \begin{array}{l}
S-20 \\
F-\frac{18}{3},-\frac{2}{1}
\end{array} \quad 3 x-2=0 \quad x-6=0 \\
& 3 x=2 \quad x=6 \\
& x=\frac{2}{3} \\
& \text {-ie values that make the en true } \\
& -6-2
\end{aligned}
$$

b.) A rectangular garden has dimensions 5 m by 7 m . When both dimensions are increased by the same length, the area of the garden increases by $45 \mathrm{~m}^{2}$.
Determine the dimensions of the larger garden.

Example 4: Determining Equations

$$
\begin{aligned}
& A=l \cdot w \\
& 80=(x+7)(x+5) \quad \begin{array}{l}
\text { Amount of is } 3 m \\
\text { increase } \\
80=
\end{array} \quad x^{2}+5 x+7 x+35 \\
& 0= x^{2}+12 x-45 \quad \text { New Dimensions are } \\
& 0=(x+15)(x-3) \quad 8 m \times 10 m \\
& x=-15 \sqrt{x=31} \\
& \text { length cant be-ve }
\end{aligned}
$$

Determine a quadratic equation which has roots of -4 and $\frac{5}{3}$.

$$
\begin{aligned}
& x=-4 \quad x=\frac{5}{3} \\
& x+4=0 \quad 3 x=5 \\
& 3 x-5=0 \\
& (x+4)(3 x-5)=0 \\
& \text { of } \\
& 3 x^{2}+7 x-20=0
\end{aligned}
$$

(-) Make sure you know the difference between
Factor: $x^{2}+x-6 \quad$ and \quad Solve $x^{2}+x-6=0$
Solution: $(x+3)(x-2)$

$$
\text { Solution: } x=-3 \text { and } x=2
$$

(). The RHS must be equal to 0 (or the zero product property does not apply).
(). Make sure your solutions are logical for word problems. ie. length cant be negative.
pg.
\# $b a, c, i, j, m$
pg
270
$\# 10,12,14$
7c,9,j
$8 a, b$

