L6 Completing the Square

Tuesday, September 20, 2022 8:45 AM

W L6 Completing the Square

Quadratic Functions and Euations I Page 1

Lesson 6 Converting to Standard Form - Completing the Square

Recall:
General form

$$
y=a x^{2}+b x+c
$$

Standard form

$$
y=a(x-h)^{2}+k
$$

When the equation of a quadratic function is in general form, most characteristics of the graph cannot be identified. Therefore it is useful to convert from general form to standard form by completing the square.

Example 1

Convert $y=x^{2}-6 x+11$ to standard form.

$$
\begin{aligned}
& y=\left(x^{2}-6 x+9\right)+11-9 \\
& y=(x-3)(x-3)+2 \\
& y=(x-3)^{2}+2
\end{aligned}
$$

Step 1: Bracket the terms with " x ".

Step 2: Complete the square. Divide b sum (the coefficient of x) by 2 and square it to create a perfect square trinomial. Balance * Take half the the suation (b) and square.

Step 3: Rewrite the perfect square trinomial as a binomial squared.

Example 2

Convert $y=x^{2}-4 x+10$ to standard form.

$$
\begin{aligned}
& y=\left(x^{2}-4 x+4\right)+10-4 \\
& y=(x-2)^{2}+6
\end{aligned}
$$

Example 3

Convert $y=2 x^{2}-8 x-7$ to standard form.

$$
\begin{aligned}
& y=\frac{2\left(x^{2}-4 x+4\right)}{8}-7-8 \\
& y=2(x-2)^{2}-15
\end{aligned}
$$

Step 1: Bracket the terms with " x " and
factor out the numerical coefficient " a " value (include the sign)

Step 2: Complete the square. Divide b (the coefficient of x) by 2 and square it to create a perfect square trinomial.

Step 3: Balance the equation (multiply the number added in step 2 by the coefficient)

Step 4: Rewrite the perfect square trinomial as a binomial squared.

Example 4

Write in standard form: $y=-\frac{1}{2} x^{2}-3 x+5$

$$
\begin{aligned}
& y=-\frac{1}{2}\left(x^{2}+6 x+9\right)+5+\frac{9}{2} \\
& y=-\frac{9}{2} \\
& y=-\frac{1}{2}(x+3)^{2}+\frac{10}{2}+\frac{9}{2} \\
& y=-\frac{1}{2}(x+3)^{2}+\frac{19}{2}
\end{aligned}
$$

Example 5
Identify the intercepts, the equation of the axis of symmetry, and the coordinates of the vertex of the graph of

$$
\begin{array}{rlr}
\text { a.) } y & =3 x^{2}-12 x+7 \\
y & =3\left(x^{2}-4 x+4\right)+7-12 \\
y & =3(x-2)^{2}-5 & \\
y=0 \quad y(2,-5) \\
y & =3(0)^{2}-12(0)+7 & \\
y & =7 & \text { a.o.s } \longrightarrow x=h \\
x & =2
\end{array}
$$

$$
\begin{aligned}
& \text { b.) } y=-2 x^{2}+10 x-3 \\
& y=\underbrace{-2\left(x^{2}-5 x+\frac{25}{4}\right)-3+2\left(\frac{25}{4}\right)}_{-2\left(\frac{25}{4}\right)} \\
& y=-2\left(x-\frac{5}{2}\right)^{2}-3+\frac{25}{2} \\
& y=-2\left(x-\frac{5}{2}\right)^{2}-\frac{6}{2}+\frac{25}{2} \\
& y=-2\left(x-\frac{5}{2}\right)^{2}+\frac{19}{2} \\
& \frac{y \text {-int }}{x=0} \\
& \begin{aligned}
y & =-2(0)^{2}+10(0)-3 \\
& =-3
\end{aligned} \\
& =-3 \\
& V\left(\frac{5}{2}, \frac{19}{2}\right) \\
& 0.0 .5 \quad x=\frac{5}{2} \\
& \text { Assign } \\
& \text { pg. } 239 \\
& \# \mid c, f \\
& y=3 x^{2}+18 x-4 \\
& 2 d, f \\
& 4 c, d, f, 1 \\
& y=-2 x^{2}+8 x-1
\end{aligned}
$$

$59, j \quad$ challenge:
$6 a, d \quad$ d
convert $y=a x^{2}+b x+c$ to standard

