L3 Properties of a Quad Fcn

Tuesday, September 6, 2022

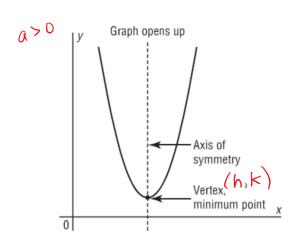
6:49 PM

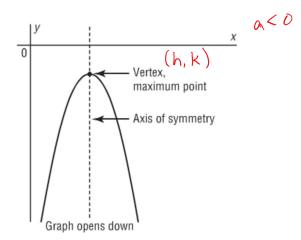
L3 Properties of a Quad Fcn

Lesson 3 Properties of a Quadratic Function

A *quadratic function* is any function that can be written in the form $y = ax^2 + bx + c$, where a, b and c are real numbers and $a \neq 0$. This is called the *general form* of a quadratic function.

Shape of graph: parabola opening up or down.


Vertex: highest or lowest point, known as the maximum/minimum point Coordinates are (h, k) when written in transformational form $y = a(x - h)^2 + k$


Axis of symmetry: the vertical line through the vertex of a parabola, written as x = hThe parabola is symmetrical about this line.

Given $y = ax^2$,

up and its vertex is a minimum point.

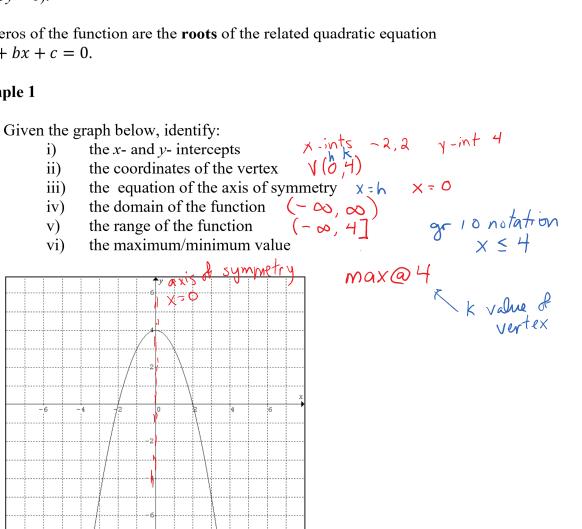
if a is positive (a > 0), the parabola opens if a is negative, $(a \le 0)$ the parabola opens down and its vertex is a maximum point.

Domain: $(-\infty, \infty)$

all values of x

Range: $[k, \infty)$ or $(-\infty, k]$ y-coordinate of vertex

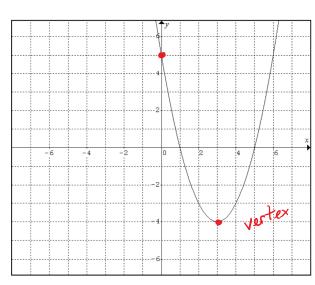
(max/min value)


The *y*-intercept of a quadratic function is the value of y when x = 0.

The x-intercepts of the graph of a quadratic function, $y = ax^2 + bx + c$ are called the zeros of the function because they are the values of x when the function equals 0 (when y = 0).

The zeros of the function are the **roots** of the related quadratic equation $ax^2 + bx + c = 0.$

Example 1


- a) Given the graph below, identify:
 - i)
 - ii)
 - iii)
 - iv)
 - v)
 - vi)

Example 2

- b) Given the graph below, identify:
 - i)
- raph below, identify: the x- and y- intercepts \times -ints 1,5 \times -int 5 the coordinates of the vertex \times (3,-4) the equation of the axis of symmetry \times -3 the domain of the function \times - \times -3 the range of the function \times - \times - \times -3 the maximum/minimum value ii)
 - iii)
 - iv)
 - v)
 - vi) the maximum/minimum value

Example 3

State the *y*-intercept of quadratic function, $y = -2x^2 + 5x - 8$.

$$x = 0$$
 $y = -2x^{2} + 5x - 8$
 $y = -2(0)^{2} + 5(0) - 8$
 $y = -8$