L2 Factoring Polynomials again

w $=$ L2 Factoring Polynomials again

Lesson 2 Factoring Polynomials...again

Example 1

Factor:

$$
0 \text { a) }
$$

a) $6 a^{4}+7 a^{2}-10$

$$
p-60 \quad\left(a^{2}+2\right)\left(6 a^{2}-5\right)
$$

$$
=\frac{-5}{1}, \frac{12}{6}
$$

$$
\text { c) }\left(x^{2}-\frac{17}{3} x-2\right)^{\times 3} \quad \text { d) }\left(2 x^{\left.-2 x^{\alpha}-7 x^{-3} x^{4}+3 x^{-4}\right)^{x^{4}}}\right.
$$

$$
\frac{1}{3}\left(3 x^{2}-17 x-6\right) \quad x^{-4}\left(2 x^{2}-7 x+3\right)
$$

$$
\begin{array}{lll}
p-18 \\
s-17 \\
s-18.1
\end{array} \frac{1}{3}(3 x+1)(x-6) \quad \begin{aligned}
& \text { p } \\
& 5-7 \\
& \hline
\end{aligned}
$$

$$
F-\frac{18,}{3}, \frac{1}{1}
$$

$$
\text { e) } x^{2 n}+7 x^{n}+12
$$

$$
\left(x^{n}+3\right)\left(x^{n}+4\right)
$$

Example 2: Using Patterns to Factor

Factor each polynomial expression:
a) $(x+3)^{2}-6(x+3)-16$

$$
\begin{aligned}
& \text { b) } \left.\frac{1}{4} x^{2}-x-3\right)^{4} \\
& \frac{1}{4}\left(x^{2}-4 x-12\right) \\
& \frac{1}{4}(x-6)(x+2) \\
& \begin{array}{l}
\text { pg } 166 \\
\# q b, d, f, h \\
\text { Try } 14 c, e, f
\end{array} \\
& \text { Ans } 9 \text { b) } \frac{1}{9}(3 x-1)(3 x-2) \\
& \text { d) } \frac{1}{4} x(x-8)(x+4) \\
& \text { f) }\left(x^{3 n}-1\right)\left(x^{3 n}-2\right) \\
& \text { n) }\left(y^{n}-2 y^{m}\right)\left(y^{n}-5 y^{m}\right)
\end{aligned}
$$

b) $2(x-6)^{2}+10(x-6)-48$
c) $3(2 x+5)^{2}+10(2 x+5)-8$

Example 3: Factor, using patterns

a) $(3 x+4)^{2}-(2 y-1)^{2}$
b) $27(2 x-3)^{2}-75(y-4)^{2}$
c) $32(x+2)^{2}-18(2 y-3)^{2}$
d) $\left(4 x^{2}+4 x y+y^{2}\right)-9 z^{2}$

