QEQFII L1 Using Square Roots to Solve Quadratics

Sunday, October 2, 2022 8:36 PM

Lesson 1 Using Square Roots to Solve Quadratic Equations

Solving Quadratic Equations Using the Square Root Principle

When b = 0, the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, becomes $ax^2 + c = 0$. If this equation has a solution, it can be solved using square roots.

Example 1

Solve each equation. Verify the solution.

a) $3x^2 - 7 = 8$ $3x^2 = 15$ $x^2 = 5$ $x = \pm\sqrt{5}$ b) $(x + 3)^2 = 20$ $x + 3 = \pm\sqrt{20}$ $x = -3 \pm\sqrt{4} \cdot 5$ $x = -3 \pm\sqrt{4} \cdot 5$ $x = -3 \pm\sqrt{5}$ c) $3x^2 + 12 = 0$ $3x^2 = -12$ $x^3 = -12$ $x^3 = -12$

Example 2 Solve, by completing the square. a.) $x^2 + 6x = 16$

Pre-Calculus 11 Enriched Quadratic Equations & Functions II

b.)
$$x^{2} + 8x - 10 = 0$$

 $x^{2} + 8x = 70$
 $x^{2} + 8x + 16 = 70 + 16$
 $(x + 4)^{2} = 26$
 $x + 4 = \pm \sqrt{26}$
 $x = -4 \pm \sqrt{26}$

If we needed approximate values
(in to plot x-intercepts), use calc.
$$x = -4 + \sqrt{ab}$$
 $x = -4 - \sqrt{ab}$
 $x = 1.099$ $x = -9.099$

$$x^{(-2)} (-\frac{1}{2}x^{2} + 6x - 1) = 0^{x(-2)}$$

$$x^{2} - 12x + 2 = 0$$

$$x^{2} - 12x + 36 = -2 + 36$$

$$(x - 6)^{2} = 34$$

$$x - 6 = \frac{1}{2}\sqrt{34}$$

$$x = 6 \pm \sqrt{34}$$

Example 3

A football is kicked vertically. The approximate height of the football, h metres, after t seconds is modelled by this formula: $h = 1 + 20t - 5t^2$. Determine when the football will hit the ground (to the nearest tenth of a second).

Assign
Assign

$$h = 1 + a0t - 5t^{a}$$

 $p_{3} = a73$
 $p_{3} = a73$
 $p_{4} = b_{1}c, d, g, 1$
 $f = b_{1}c, d,$