QEQFII L1 Using Square Roots to Solve Quadratics

(0) QEQFII L1 Using Square Roots to Solve Quadratics

Lesson 1 Using Square Roots to Solve Quadratic Equations

Solving Quadratic Equations Using the Square Root Principle

When $b=0$, the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$, becomes $a x^{2}+c=0$. If this equation has a solution, it can be solved using square roots.

Example 1

Solve each equation. Verify the solution.
a) $3 x^{2}-7=8$
$3(\pm \sqrt{5})^{2}-7=8$
$3 x^{2}=15$

$$
3(5)-7=8
$$

$$
x^{2}=5
$$

$$
x= \pm \sqrt{5}
$$

b) $(x+3)^{2}=20$

$$
x+3= \pm \sqrt{20}
$$

$$
x=-3+2 \sqrt{5}
$$

$$
x=-3 \pm \sqrt{4 \cdot 5}
$$

$$
\} e x a c^{t} \text { values }
$$

$$
x=-3 \pm 2 \sqrt{5}
$$

$$
\begin{aligned}
& \text { or } \\
& x=-3-2 \sqrt{5}
\end{aligned}
$$

c) $3 x^{2}+12=0$

$$
\begin{gathered}
3 x^{2}=-12 \\
x^{2}=-4 \\
\phi_{\text {or }}
\end{gathered}
$$

$$
x^{2}=-4 \longleftarrow \text { cant square root a }
$$

negative number
or No sol'n

Example 2

Solve, by completing the square.
a.) $x^{2}+6 x=16$

b.) $x^{2}+8 x-10=0$

$$
\begin{gathered}
x^{2}+8 x=10 \\
x^{2}+8 x+16=10+16 \\
(x+4)^{2}=26 \\
x+4= \pm \sqrt{26} \\
x=-4 \pm \sqrt{26}
\end{gathered}
$$

$x(-2)$
c.) $\left(-\frac{1}{2} x^{2}+6 x-1\right)=0^{x(-2)}$

$$
\begin{aligned}
& x^{2}-12 x+2=0 \\
& x^{2}-12 x+36=-2+36 \\
& (x-6)^{2}=34 \\
& x-6= \pm \sqrt{34} \\
& x=6 \pm \sqrt{34}
\end{aligned}
$$

Example 3
A football is kicked vertically. The approximate height of the football, h metres, after t seconds is modelled by this formula: $h=1+20 t-5 t^{2}$. Determine when the football will hit the ground (to the nearest tenth of a second).
\rightarrow height at ground level is 0 m

Assign

$$
\begin{gathered}
\therefore h=0 \\
h=1+20 t-5 t^{2} \\
0=1+20 t-5 t^{2}
\end{gathered}
$$

pg. 273
1 2 2b,c, d, g, i

$$
\begin{aligned}
& 5 t^{2}-20 t-1=0 \\
& 5 \underbrace{\left(t^{2}-4 t+4\right)}_{5\left(t^{20}-2\right)^{2}=21}=1+20
\end{aligned}
$$

The ball hits the ground at $t=4.0 \mathrm{~s}$.

$$
(t-2)^{2}=\frac{21}{5}
$$

$$
\begin{aligned}
& 5 b \\
& 6 a, c, c, g, i, k
\end{aligned}
$$

$$
7 b, f
$$

$$
\begin{aligned}
t-2 & = \pm \sqrt{\frac{21}{5}} \\
t=2+\sqrt{\frac{21}{5}} \text { or } & t=2-\sqrt{\frac{\sqrt{21}}{5}} \\
t=4.049 \ldots & t=-0.049 \\
t=4.0 \mathrm{~s} & \begin{array}{l}
t=-2.25 \mathrm{~s} \\
\text { time cant } \\
\text { bede }
\end{array}
\end{aligned}
$$

