

L1 Factoring Polynomials

Pre-Calculus 11 Enriched Quadratic Equations & Functions I

Lesson 1 Factoring Polynomials

Definitions:

Factor: a number that divides evenly into another number ie. factors of 18 are 1, 2, 3, 6, 9, and 18

Multiples of a number are determined by multiplying the number by any whole number other than 1 (or by skip counting) ie. some multiples of 6 are 6, 12, 18, 24...

Greatest Common Factor (GCF) of two or more terms is the greatest factor the terms have in common.

ie. the greatest common factor of 32 and 48 is 16

Perfect Square Trinomial: $(a + b)^2 = (a + b)(a + b) = a^2 + 2ab + b^2$

Square the first term a^2 Double the inside product 2abSquare the 2^{nd} term b^2

Example 1: Greatest Common Factor (GCF)

Factor:

a)
$$x^2 + 4x$$

b)
$$y^3 - 2y^2$$

$$\times(x+4)$$

c)
$$4cd^2 + 20cd$$

d)
$$6p^2 + 6p$$

Example 2: Difference of Squares

Factor:

a)
$$x^2 - 4$$

$$(x+a)(x-a)$$

b)
$$25a^2 - 16b^2$$

$$a^{a}-b^{a}$$
 $(a+b)(a-b)$ conjugates
 $a^{a}-ab+ab-b^{a}$
 $a^{a}-b^{a}$

Example 3: Factoring Trinomials

a = 1 (Product, Sum, Factors)

factor: a)
$$x^2 - 4x - 21$$

b)
$$|x^2-4x+4|$$
 eperfect square

Factor:
a)
$$x^2-4x-21$$
b) x^2-4x+4
 \leftarrow perfect square trinomial
$$S-4 \qquad (x+3)(x-7) \qquad P \qquad 4$$

$$S-4 \qquad (x-2)(x-2)$$

$$F-2,-2 \qquad \text{or}$$

c)
$$t^2 - 3t - 10$$

d)
$$x^2 + 3x - 28$$

$$F - 2, -2$$

$$F - 2, -2$$

$$(x - 2)^{a}$$

$$(x - 2)^{a}$$

$$F - 3, -28$$

$$F - 10 \qquad (t + 2)(t - 5) \qquad P - 28$$

$$S - 3 \qquad (x - 4)(x + 7)$$

$$S - 3 \qquad F - 5, 2$$

$$F - 7, -4$$

Try $x^2 - 3x - 18$ x2-6x-16

Example 4: Factoring Trinomials

$$a \neq 1$$
 (PSF)

Factor: a)
$$3x^2 - 10x - 8$$

b)
$$4x^2 + 3x - 7$$

$$P-24$$
 $(3x+2)(x-4)$
 $S-10$
 $F-12,2$
 -4

$$P-24$$
 $(3x+2)(x-4)$ $P-28$ $(X-1)(4x+7)$
 $S-10$ $S=3$ $F=-12,2$ $F=-1,-4$ $Y=-1,-4$

c)
$$3t^{2} + 13t + 4$$

d) $2d^{2} + 6d - 56$
 $2(d^{2} + 3d - 28)$ GCF
 $3t^{2} + 13t + 4$
S 13
F $\frac{12}{3}$, $\frac{1}{3}$
P -28 $2(d-4)(d+7)$
S 3

c) $3t^2 + 13t + 4$

d)
$$2d^{2} + 6d - 56$$

 $2(d^{2} + 3d - 28)$ GCF
First 11

$$p-28$$
 $2(d-4)(d+7)$
 $5 3$
 $f 7,-4$

Try
$$3x^2 + 7x + 2$$

 $(3x+1)(x+2)$