Lesson 5 The Quadratic Formula

Completing the square can be used to solve quadratics that cannot be factored. The generalization to this solution is called the quadratic formula. The quadratic formula is used to solve quadratic equations of the form $a x^{2}+b x+c=0, a \neq 0$.

Deriving the Quadratic Formula from $a x^{2}+b x+c=0$

1. Divide by " a " so coefficient of x^{2} is 1 .

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

2. Isolate the terms with x.

$$
x^{2}+\frac{b}{a} x=-\frac{c}{a}
$$

$$
x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}
$$

4. Simplify.

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}\left(\frac{4 a}{4 a}\right)
$$

5. Find Common Denominator for right hand side.

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

6. Square root both sides.

$$
\left(x+\frac{b}{2 a}\right)= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
$$

7. Simplify.

$$
\left(x+\frac{b}{2 a}\right)= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

8. Isolate x.

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

9. Combine fractions.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\text { for } a x^{2}+b x+c=0
$$

Example 1

Solve, using the quadratic formula:

$$
\begin{aligned}
& \text { a) } x^{2}-6 x+5=0 \\
& \begin{aligned}
& a=1 \\
& b=-6 \\
& c=5
\end{aligned} x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(5)}}{2(1)} \\
& x=\frac{6 \pm \sqrt{16}}{2} \\
& x=\frac{6 \pm 4}{2} \\
& x=\frac{6+4}{2} \\
& x=\frac{x}{x} \quad x=\frac{6-4}{2}
\end{aligned}
$$

b) $x^{2}-6 x=-7$

$$
\begin{aligned}
& x^{2}-6 x=-7 \\
& x^{2}-6 x+7=0
\end{aligned}
$$

$a=1$
$b=-6$
$c=7$

$$
x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(7)}}{2(1)}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{8}}{2} \\
& x=\frac{6 \pm 2 \sqrt{2}}{2} \\
& x=\frac{6 \pm \frac{2 \sqrt{2}}{2}}{2} \\
& x=3 \pm \sqrt{2}
\end{aligned}
$$

$$
\frac{\sqrt{8}}{\sqrt{4.2}}
$$

$$
2 \sqrt{2}
$$

c) $3 x^{2}-5 x+7=0$
$a=3$

$$
\begin{aligned}
& b=-5 \\
& c=7
\end{aligned}
$$

$$
\begin{aligned}
& x= \frac{-(-5) \pm \sqrt{(-5)^{2}-+(3)(7)}}{2(3)} \\
& x= \frac{5 \pm \sqrt{-59}}{6}<\text { cannot square root } \\
& \therefore \text { no solin negative value } \\
& \text { no real roots exist }
\end{aligned}
$$

Example 2

Simplify
a.) $x=\frac{5 \pm \sqrt{50}}{10}$
b.) $x=\frac{8 \pm \sqrt{24}}{4}$
$x=\frac{5 \pm \sqrt{25 \cdot 2}}{10}$
$x=\frac{5 \pm 5 \sqrt{2}}{10} \div$ each term $_{\text {by } 5}$
$x=\frac{1 \pm \sqrt{2}}{2}$
$x=\frac{8 \pm \sqrt{4 \cdot 6}}{4}$
$x=\frac{8 \pm 2 \sqrt{6}}{4}$
$x=\frac{4 \pm \sqrt{6}}{2}$

Exercise 5 The Quadratic Formula

1.) Solve: (follow example 1)
a.) $3 x^{2}+5 x-2=0 \quad$ a) $\mathrm{x}=\frac{1}{3} \quad \mathrm{x}=-2$
b.) $-2 x^{2}+3 x+8=0$ b) $\mathrm{x}=\frac{-3 \pm \sqrt{73}}{-4}$
c) $x=\frac{3 \pm 3 \sqrt{2}}{2}$
d.) $3 x^{2}=-5 x+1$
e.) $2 x^{2}+4 x+7=0$
d) $x=-\frac{5 \pm \sqrt{37}}{6}$
f.) $16 x^{2}+24 x=-9$
c) ϕ
f) $x=-\frac{3}{4}$
2.) Solve, using an appropriate method: (L3, L4, L5)
a.) $x^{2}+2 x-2=0 \quad x=-1 \pm \sqrt{3}$
b.) $-x^{2}+6 x-9=0 \quad x=3$
c.) $-2 x^{2}+16=0 \quad x= \pm 2 \sqrt{2}$
d.) $\frac{x^{2}}{2}-\frac{x}{2}=1 \quad \mathrm{x}=2 \quad \mathrm{x}=-1$
e.) $x^{2}-4 x+8=0 \quad \phi$

$$
\begin{array}{ll}
\text { 1f) } 16 x^{2} \oplus \frac{24}{} \underline{2}+\frac{9}{0} 0 \\
x=\frac{-24 \pm \sqrt{24^{2}-4(16)(9)}}{2(16)} & \begin{array}{cc}
\text { factor } \\
\text { perfect squaretrinomia }
\end{array} \\
x=-\frac{24}{32} & (4 x+3)(4 x+3)=0 \\
x=-\frac{3}{4} & 4 x+3=0 \\
4 x=-3 \\
x=-\frac{3}{4}
\end{array}
$$

Extra Practice: Pg. 218 \#5, 6, 7a, b, 8

