Lesson 4 Using Square Roots to Solve Quadratic Equations

Solving Quadratic Equations Using the Square Root Principle

When $b=0$, the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$, becomes $a x^{2}+c=0$. If this equation has a solution, it can be solved using square roots.

Example 1

Solve each equation. Verify the solution.
a) $3 x^{2} \not 7^{+K}=8+7$

$$
\begin{array}{ll}
\frac{3 x^{2}}{3}=\frac{15}{3} & \pm \sqrt{5} \text { because } \\
x^{2}=5 & (\sqrt{5})(\sqrt{5})=5 \\
x= \pm \sqrt{5} & (-\sqrt{5})(-\sqrt{5})=5
\end{array}
$$

b) $(x+3)^{2}=20$

$$
\begin{aligned}
& x+3= \pm \sqrt{20} \\
& x=-3 \pm \sqrt{20} \longleftarrow \text { complex radical }
\end{aligned}
$$

$$
\begin{aligned}
& x=-3 \pm \sqrt{20} \longleftarrow \text { complex radical } \\
& x=-3 \pm \sqrt{4} \cdot 5
\end{aligned} \text { largest perfect square factor of } 20
$$

$$
x=-3 \pm 2 \sqrt{5}
$$

-exact values
c) $3 x^{2}+12=0$

Completing the Square

Recall: Perfect Square Trinomials.
Factor: $\quad x^{2}+6 x+9$

$$
x^{2}-4 x+4
$$

$$
\begin{array}{lc}
p q & (x+3)(x+3) \\
56 & \text { or } \\
=3,3 & (x+3)^{2}
\end{array}
$$

Example 2

divide Solve, by completing the square

$$
\text { b.) } \begin{gathered}
x^{2}+8 x-10=0 \\
\left.\begin{array}{c}
x^{2}+8 x+16=10+16 \\
(x+4)(x+4) \\
(x+4)^{2}
\end{array}\right)^{2}=26 \\
x+4= \pm \sqrt{26} \\
x=-4 \pm \sqrt{26}
\end{gathered}
$$

(1) Steps terms with x on one side
(2) Complete the square
(divide " b " by 2 and square)
(3) Balance the equation
(add new value to both sides)
together (4) Factor perfect square trinomist
(6) Square root both sides
(7) Isolate x

$$
\begin{aligned}
& \left(\frac{6}{2}\right)^{2^{2}} \text { area.) } x^{2}+6 x=16 \text { to make a perfect square trinomial } \\
& \text { PSF? } \begin{aligned}
(x+3)(x+3) & =25
\end{aligned} \text { balance (what we do to one side, we must } \\
& (x+3)^{2}=25 \\
& x+3= \pm 5 \\
& x=-3 \pm 5 \\
& \text { split into two roots } \\
& x=-3+5 \quad x=-3-5 \\
& x=2 \quad x=-8
\end{aligned}
$$

$$
\begin{aligned}
\text { c.) }\left(-\frac{1}{2} x^{2}+6 x-1\right) & =0^{x(-2)} \quad \text { Multiply both sides by }-2 \\
x^{2}-12 x+2 & =0 \\
x^{2}-12 x+36 & =-2+36 \\
(x-6)(x-6) & =34 \quad \text { 世就 } \\
(x-6)^{2} & =34 \\
x-6 & = \pm \sqrt{34} \\
x=6 & \pm \sqrt{34}
\end{aligned}
$$

Example 3

A football is kicked vertically. The approximate height of the football, h metres, after t seconds is modelled by this formula: $h=1+20 t-5 t^{2}$. Determine when the football hit the ground (to the nearest tenth of a second).

$$
\begin{aligned}
& \begin{array}{l}
h=0 \\
h
\end{array}=1+20 t-5 t^{2} \\
& 0=1+20 t-5 t^{2} \\
& 5 t^{2}-20 t=1 \\
& 5\left(t^{2}-4 t+4\right)=1+20 \\
& 5(t-2)^{2}=21 \\
&(t-2)^{2}=\frac{21}{5} \\
& t-2= \pm \sqrt{\frac{21}{5}} \\
& t=2+\sqrt{\frac{21}{5}} \\
& t=4 \text {. } 0 \\
& \text { It }
\end{aligned}
$$

Exercise 4 Using Square Roots to Solve Quadratic Equations

1.) Solve (express answers as exact values): (follow example 1)
a.) $2 x^{2}-8=0$
b.) $(x+2)^{2}=7$
$x= \pm 2$

$$
x=-2 \pm \sqrt{7}
$$

2.) Solve: (follow example 2)
a.) $x^{2}-8 x=4 \quad x=4 \pm 2 \sqrt{5}$
b.) $x^{2}+10 x+4=0$
c.) $\frac{1}{2} x^{2}-6 x-5=0$
$x=-5 \pm \sqrt{21}$
3.) Word Problem (follow example 3)

The path of debris from fireworks when the wind is about $25 \mathrm{~km} / \mathrm{h}$ can be modelled by the quadratic function $h=-\frac{1}{2} x^{2}+x+7$ where h is the height and x is the horizontal distance travelled, in metres. Determine how far away from the launch site the debris will land, to the nearest tenth of a metre.

$$
\text { 3) } \begin{aligned}
& 4.9 \mathrm{~m} \\
& 0=-\frac{1}{2} x^{2}+x+7 \\
& 0=x^{2}-2 x-14 \\
& 1+14=x^{2}-2 x+1 \\
& 15=(x-1)^{2} \\
& \pm \sqrt{15}=x-1 \\
& 1 \pm \sqrt{15}=x \\
& 4.9 m=x \quad x=-2.9
\end{aligned}
$$

Extra Practice: Pg. 20 有, $6,8,9,10 \mathrm{~h}, 11 a, 12,13$

$$
\text { py } 20 b \# 5 a, b, 8 a, b, 9,10 b, 12
$$

$$
\begin{gathered}
\text { 2b) } x^{2}+10 x+4=0 \\
x^{2}+10 x+25=-4+25 \\
(x+5)^{2}=21 \\
x+5= \pm \sqrt{21} \\
x=-5 \pm \sqrt{21} \\
\text { 2a) } \begin{array}{c}
x^{2}-8 x=4 \\
x^{2}-8 x+16=4+16 \\
(x-4)^{2}=20 \\
x-4= \pm \sqrt{20} \\
x=4 \pm \sqrt{20} \\
x=4 \pm 2 \sqrt{5}
\end{array}
\end{gathered}
$$

