Lesson 3 Solving Quadratic Equations by Factoring

A quadratic equation is any equation which can be written in the form $a x^{2}+b x+c=0$ where $a \neq 0$ and a, b, and c are constants.
ie. $x^{2}-5 x-45=0$ contains a quadratic or second-degree term (a term with a variable that is squared) and no term of higher degree. This is an example of a quadratic equation because it has an equals sign.
Note: $x^{2}-5 x-45$ is a quadratic expression

Solving Quadratic Equations

One strategy is to solve by factoring and apply the zero product property.
Zero product property: If the product of two numbers is 0 , then one or both numbers must be equal to 0 .
ie. $(x+b)(x+d)=0$, then $(x+b)=0$, and/or $(x+d)=0$
The solutions to a quadratic equation are called the roots (values which make the equation true) of the equation. The roots of a quadratic equation are the same values as the x-intercepts of the graph of $y=a x^{2}+b x+c$, or the zeros of the corresponding quadratic function, $y=a x^{2}+b x+c$.

Types of Solutions

$$
\begin{aligned}
y=a x^{2}+b x+c & \longrightarrow
\end{aligned} \begin{aligned}
& 0=a x^{2}+b x+c \\
& \text { 1 Solution } \\
& y=0 \\
& y=0 \text { on } \\
&
\end{aligned} \quad \begin{gathered}
\text { on } x-a x \text { is }
\end{gathered}
$$

Example 1: Solve by Factoring
Solve each equation, then verify the solution.
a) $x^{2}-x-56=0$

$$
\begin{array}{cc}
P-56 & (x-8)(x+7)=0 \\
5-1 & x+7=0 \\
F-8,7 & x-8=0 \\
& x=8
\end{array} x=-7 ~ \$
$$

b) $(3 x+1)(x-6)=0$

$$
\begin{aligned}
3 x+1 & =0 \quad x-6=0 \\
3 x & =-1 \quad x=6 \\
x & =-\frac{1}{3}
\end{aligned}
$$

(1) Make sure me side equals 0
(2) Factor
(3) Set each factor equal to 0 (zero product principle)
(4) Solve

Already in factored form and RHS equals O

Pre-Calculus 11 Quadratic Equations

Example 2

Solve, by factoring.
a.) $3 x^{2}+75 \stackrel{+30 x}{=}-30 x+30 x$
one side must be 0

$$
\begin{array}{cc}
\frac{3 x^{2}}{3}+\frac{30 x}{3}+\frac{75}{3}=\frac{0}{3} & \text { GCF } 3 \\
x^{2}+10 x+25=0 & \text { since it's an equation, } \\
(x+5)(x+5)=0 & \text { we divide both sides by } 3 \\
x+5=0 & \text { perfect square trinomial } \\
x=-5 & \text { identical factors } \\
x
\end{array}
$$

b.) $5 x^{2}=-20 x$

Example 3: Using Quadratic Equations to Solve Word Problems
a.) The sum of a number and its square is $\underset{x^{2}}{x}$. Determine the number.

$$
\begin{array}{cc}
x+x^{2}=20 \\
p-20 & x^{2}+x-20=0 \\
5 & (x+5)(x-4)=0 \quad \text { must be } 0 \\
\bar{r} 51^{-4} & x+5=0 \quad x-4=0 \quad \text { zero product principle } \\
x=-5 \quad x=4 & \text { set each factor }=0 \\
& \text { and solve } \\
& \therefore \text { the number is either }-5 \text { or } 4
\end{array}
$$

b.) A rectangular garden has dimensions 5 m by 7 m . When both dimensions are increased by the same length, the area of the garden increases by $45 \mathrm{~m}^{2}$.
Determine the dimensions of the larger garden.

Example 4: Determining Equations
solutions of
Determine a quadratic equation which has roots of -4 and $\frac{5}{3}$. a quadratic equation

$$
\begin{gathered}
x=-4 \quad x=\frac{5}{3} \\
x+4=0 \quad 3 x=5 \\
3 x-5=0 \\
\begin{aligned}
&x+4)(3 x-5)=0 \\
& 3 x^{2}-5 x+12 x-20=0 \\
& 3 x^{2}+7 x-20=0 \quad \text { factored form } \\
& \text { 世trinomial } \\
& \text { ornal form } \\
& \text { general }
\end{aligned}
\end{gathered}
$$

Bulawka's Bullets

(․) Make sure you know the difference between

Factor: $x^{2}+x-6 \leftarrow$ expressind Solution: $(x+3)(x-2)$ binomial factors

Solve $x^{2}+x-6=0$
Solution: $x=-3 \underset{\text { roots }}{\operatorname{and}} x=2$
(3) The RHS must be equal to 0 (or the zero product property does not apply).
(3) Make sure your solutions are logical for word problems ie. length can't be negative.

Exercise 3 Solving Quadratic Equations by Factoring

1.) Solve: (follow example 1)
a.) $x^{2}+x-20=0$
b.) $(x+3)(2 x-5)=0$
$x=-5,4$
$x=-3, \frac{5}{2}$
2.) Solve: (follow example 2)
a.) $42=x^{2}-x$
b.) $3=6 x^{2}-7 x$
$x=7,-6$
$x=-\frac{1}{3}, \frac{3}{2}$
3.) Solve: (distribute, then follow example 2)
$x(2 x-3)-2(3+2 x)=-4(x+1)$

$$
x=-\frac{1}{2}, 2
$$

4.) Solve: (follow example 3)
a.) The product of two consecutive even numbers is 16 more than 8 times the smaller integer. Determine the integers.

8 and 10
b.) The width of the top of a notebook computer is 7 cm less than the length. The surface area of the top of the notebook is $690 \mathrm{~cm}^{2}$. Determine the dimensions of the computer. $\quad 30 \mathrm{~cm} \times 23 \mathrm{~cm}$
5.) Determine an equation for: (follow example 4)
a.) a quadratic equation with roots of $\frac{2}{3}$ and 4 . $\quad 3 x^{2}-14 x+8=0$
b.) a quadratic equation which has factors of $(x-1)$ and $(3 x-2)$.

$$
(x-1)(3 x-2)=0 \text { or } 3 x^{2}-5 x+2=0
$$

6.) Factor: (L2, ex. 2)
$(x-2)^{2}-6(x-2)-16$
7.) Factor: (L1, ex. 4)
$4 x^{2}+4 x-3$

Extra Practice: Pg. 190 \#4-10, 14, 16, 18b, 20

