Comparing Probability and Odds

$$
\text { Probability of an event }=\frac{\# \text { of desired outcomes }}{\text { total \# of possible outcomes }}
$$

Another way to think about probability is in terms of odds.
Odds. a ratio that compares the \# of possible successful outcomes to the \# of must be possible unsuccessful outcomes successful: unsuccessful
ratio form

- Odds in favour of an event occurring
- Odds against an event occurring
 $\begin{aligned} \text { Odds against }= & \begin{array}{l}\text { \# of ways can't occur: \# of ways can occur } \\ \\ \\ \\ \text { (unsuccessful) }\end{array} \quad \begin{array}{l}\text { (successful) }\end{array}\end{aligned}$ * add up to total \# of events

Example 1

A six-sided die is rolled. Determine:
a) The probability of rolling a 4

$$
P(4)=\frac{\text { t of ways can occur }}{\text { total poss ant comes }}=\frac{1}{6}
$$

b) The odds in favour of rolling a 4

c) The odds against rolling a 4

Example 2 - Your Turn!!!

A wallet contains $3-\$ 5.00$ bills, $2-\$ 10.00$ bills, and $1-\$ 20.00$ bill. What are the odds against drawing out a $\$ 10.00$ bill?

Odds

Tree Diagram

- A type of organizer for displaying outcomes of an event.
- Each branch represents a different possible outcome.

Example 3

A coin is tossed three times. Use a tree diagram to represent the different scenarios.

8 possible | outcomes | HHH |
| :---: | :---: |
| count last | |
| cont | HTH |
| "branches" | TH'H |
| THT | |
| TTH | |
| TTH | |
| TT | |

a) Determine the probability of three tosses all landing heads.

$$
P(H H H)=\frac{1}{8}
$$

b) Determine the odds for three tosses all landing heads.

$$
\text { Odds in favour }=1: 7 \text { add up to tal outcomes }
$$

c) Determine the odds against three tosses all landing heads.

$$
\text { odds against }=7: 1
$$

Example 4
The odds in favour of an event occurring is 5:2, determine the probability of the event occurring.

$$
\begin{aligned}
& \text { Ways event ways event } \\
& \text { cannot } \\
& \text { can occur } \begin{array}{c}
\text { cacur } \\
\text { och }
\end{array} \\
& \therefore \text { total ways: } 7
\end{aligned}
$$

