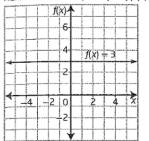
PC408 Characteristics of Polynomial Functions

The chart shows the characteristics of polynomial functions with positive leading coefficients up to degree 5.

How would the characteristics of polynomial functions change if the leading coefficient were negative?

Degree 0: Constant Function

Number of x-intercepts: 0 (for $f(x) \neq 0$)



Example: f(x) = 3

End behaviour: extends horizontally

Domain: $\{x \mid x \in R\}$

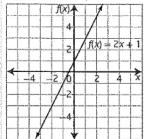
Range: {3}

Number of x-intercepts: 0

Degree 1: Linear Function

Odd degree

Number of x-intercepts: 1



Example: f(x) = 2x + 1

End behaviour: line extends down into quadrant III and up into quadrant I

Domain: $\{x \mid x \in R\}$

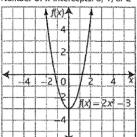
Range: $\{y \mid y \in R\}$

Number of x-intercepts: 1

Degree 2: Quadratic Function

Even degree

Number of x-intercepts: 0, 1, or 2



Example: $f(x) = 2x^2 - 3$

End behaviour: curve extends up into quadrant II and up into quadrant I

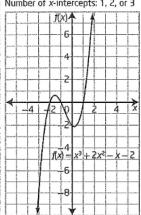
Domain: $\{x \mid x \in \mathbb{R}\}$

Range: $\{y \mid y \ge -2, y \in R\}$ Number of x-intercepts: 2

Degree 3: Cubic Function

Odd degree

Number of x-intercepts: 1, 2, or 3



Example:

 $f(x) = x^3 + 2x^2 - x - 2$

End behaviour: curve extends down into quadrant III and up into quadrant [

Domain: $\{x \mid x \in \mathbb{R}\}$

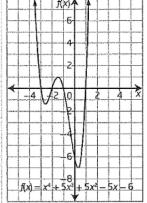
Range: $\{y \mid y \in R\}$

Number of x-intercepts: 3

Degree 4: Quartic Function

Even degree

Number of x-intercepts: 0, 1, 2, 3, or 4



 $f(x) = x^4 + 5x^3 + 5x^2 - 5x - 6$

End behaviour: curve extends up into quadrant il and up into quadrant I

Domain: $\{x \mid x \in R\}$

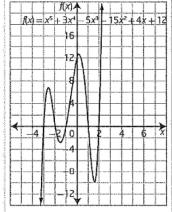
Range: $\{y \mid y \ge -6.91, y \in R\}$

Number of x-intercepts: 4

Degree 5: Quintic Function

Odd degree

Number of x-intercepts: 1, 2, 3, 4, or 5



 $f(x) = x^5 + 3x^4 - 5x^3 - 15x^2 + 4x + 12$ End behaviour: curve extends down into

quadrant III and up into quadrant I

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \in R\}$

Number of x-intercepts: 5