Polynomial Functions

January 2014

Question 26

2 marks

One of the factors of $P(x) = x^3 - kx^2 - 7x + 10$ is (x - 2).

Find the value of *k*.

Solution

Method 1

x = 2

$0 = (2)^3 - k(2)^2 - 7(2) + 10$	
0 = 8 - 4k - 14 + 10	
0 = 4 - 4k	
4k = 4	
k = 1	

 $\frac{1}{2}$ mark for x = 2

1 mark for remainder theorem

 $\frac{1}{2}$ mark for solving for k

2 marks

Question 35

1 mark

When P(x) is divided by x - 3, it has a quotient of $2x^2 + x - 6$ and a remainder of 4.

Determine P(x).

Solution

$$P(x) = (x-3)(2x^{2} + x - 6) + 4$$

1 mark for polynomial P(x)

or

1 mark

 $P(x) = 2x^3 - 5x^2 - 9x + 22$

Question 40

Sketch the graph of $y = x^3 + x^2 - 5x + 3$ given that one of the *x*-intercepts is 1. Identify the *x*-intercepts and *y*-intercept.

Solution

1 mark for synthetic division

1 mark for identifying the factors

2 marks for graph (½ mark for x-intercepts, ½ mark for multiplicity, ½ mark for y-intercept, ½ mark for end behaviour)

June 2013

Question 44

2 marks

Is (x-3) a factor of $x^4 - x^3 - 3x^2 + x - 1$?

Justify your anwer.

Solution

Method 1

x = 3

 $\therefore (3)^4 - (3)^3 - 3(3)^2 + (3) - 1 = 81 - 27 - 27 + 3 - 1$ = 29

The remainder does not equal zero, therefore (x - 3) is not a factor.

 $\frac{1}{2}$ mark for x = 31 mark for remainder theorem

1/2 mark for explanation

2 marks

Method 2

3	1	-1	-3	1	-1
	\downarrow	3	6	9	30
	1	2	3	10	29

The remainder does not equal zero, therefore (x - 3) is not a factor.

 $\frac{1}{2}$ mark for x = 3

1 mark for synthetic division ¹/₂ mark for explanation

2 marks

Question 29

3 marks

Sketch the graph of:

 $f(x) = (2 - x)(x + 3)(x + 1)^2$

Label the *x*-intercepts and *y*-intercept.

Solution

x-intercepts: -3, -1, and 2

y-intercept: 6

Question 31

The graph below represents the equation $y = ax^3 + 6x^2 + 5x - 10$.

What must be true about the value of *a*? Explain your reasoning.

Solution

a is any negative number. Explanation with reference to end behaviour.

1 mark

or

a cannot be zero.

The graph is of a cubic function, not a quadratic function.