Polynomial Functions

January 2014

Question 26
2 marks

One of the factors of $P(x)=x^{3}-k x^{2}-7 x+10$ is $(x-2)$.
Find the value of k.

Solution

Method 1

$$
\begin{aligned}
x & =2 & & 1 / 2 \text { mark for } x=2 \\
0 & =(2)^{3}-k(2)^{2}-7(2)+10 & & 1 \text { mark for remainder theo } \\
0 & =8-4 k-14+10 & & \\
0 & =4-4 k & & \\
4 k & =4 & & 1 / 2 \text { mark for solving for } k \\
k & =1 & & 2 \text { marks }
\end{aligned}
$$

Question 35
1 mark

When $P(x)$ is divided by $x-3$, it has a quotient of $2 x^{2}+x-6$ and a remainder of 4 . Determine $P(x)$.

Solution

$P(x)=(x-3)\left(2 x^{2}+x-6\right)+4$
1 mark for polynomial $P(x)$
or
1 mark
$P(x)=2 x^{3}-5 x^{2}-9 x+22$

Sketch the graph of $y=x^{3}+x^{2}-5 x+3$ given that one of the x-intercepts is 1 .
Identify the x-intercepts and y-intercept.

Solution

$x=1$

$1 \mid 1$	1	-5	3
	1	2	-3
1	2	-3	0

1 mark for synthetic division
$y=(x-1)\left(x^{2}+2 x-3\right)$
$y=(x-1)(x+3)(x-1)$
$y=(x+3)(x-1)^{2}$
1 mark for identifying the factors

2 marks for graph ($1 / 2$ mark for x-intercepts, $1 / 2$ mark for multiplicity, $1 / 2$ mark for y-intercept, $1 / 2$ mark for end behaviour)

4 marks

June 2013

Question 44
Is $(x-3)$ a factor of $x^{4}-x^{3}-3 x^{2}+x-1$?
Justify your anwer.

Solution

Method 1
$x=3$
$\therefore(3)^{4}-(3)^{3}-3(3)^{2}+(3)-1=81-27-27+3-1$

$$
=29
$$

The remainder does not equal zero, therefore $(x-3)$ is not a factor.

Method 2

3) | 1 | -1 | -3 | 1 | -1 |
| ---: | ---: | ---: | ---: | ---: |
| \downarrow | 3 | 6 | 9 | 30 |
| 1 | 2 | 3 | 10 | 29 |

The remainder does not equal zero, therefore $(x-3)$ is not a factor.
$1 / 2$ mark for $x=3$
1 mark for remainder theorem
$1 / 2$ mark for explanation
2 marks
$1 / 2$ mark for $x=3$

1 mark for synthetic division
$1 / 2$ mark for explanation
2 marks

Question 29
Sketch the graph of:

$$
f(x)=(2-x)(x+3)(x+1)^{2}
$$

Label the x-intercepts and y-intercept.

Solution

x-intercepts: $-3,-1$, and 2
y-intercept: 6

The graph below represents the equation $y=a x^{3}+6 x^{2}+5 x-10$.

What must be true about the value of a ? Explain your reasoning.

Solution

a is any negative number.
Explanation with reference to end behaviour.
or
a cannot be zero.
The graph is of a cubic function, not a quadratic function.
$1 / 2$ mark
$1 / 2$ mark for explanation
1 mark
$1 / 2$ mark
$1 / 2$ mark for explanation
1 mark

