Pre-Calculus 11 Piece_wise Notation

Piecerwise Notation is used to describe a function that has different definitions for different subsets of the domain. The absolute value of a number is often defined using pieceawise notation.

Graph $\boldsymbol{y}=|\boldsymbol{x}|$

x	-2	-1	0	1	2
y	-2	-1	0	1	2
$y=\|x\|$	2	1	0	1	2

Notice how the graph of $y=|x|$ is really the graph of $y=x$ and $y=-x$, joined together at the point $(0,0)$, the critical value.

We could write this in piece-wise notation as:

$$
y=\left\{\begin{array}{c}
x, \text { if } x \geq 0 \\
-x, \text { if } x<0
\end{array}\right\}_{x-i n t}
$$

To write an absolute value function in piecewwise notation, we need to identify when the expression in the absolute value symbols is positive or zero, and negative.

Write the function $y=|x+2|$ in piece-wise notation.
The critical value of x-intercept is -2 .
When $x \geq-2$, the $|x+2|=x+2$ for $x \geq-2$
When $x<-2$, the $|x+2|=-(x+2)$ or $-x-2$ for $x<-2$.

Using Piece-wise Notation:

$$
y=\left\{\begin{array}{l}
x+2, \text { if } x \geq-2 \\
-x-2, \text { if } x<-2
\end{array}\right\}
$$

Examples: Write each function in piecewise notation.

1. $y=|2 x-1|$(1) Determine x-intercept
$y=2 x-1$
$0=2 x-1$
$1=2 x$
$\frac{1}{2}=x$
critical value,
turning point
separates domain
left of $x=\frac{1}{2}$
whets
we change the eqr to $y=-(2 x-1)$
2. $=-4 x-3+$
$y=|-4 x-3|$

$$
y=-4 x-3
$$

$$
0=-4 x-3
$$

$$
3=-4 x
$$

$$
y=\left\{\begin{array}{rl}
-4 x-3 & x \leq-\frac{3}{4} \\
4 x+3 & x>-\frac{3}{4}
\end{array}\right.
$$

$-\frac{3}{4}=x$
3. $y=\left|-x^{2}+2 x+3\right|$

$$
\begin{gathered}
y=-x^{2}+2 x+3 \\
0=-x^{2}+2 x+3 \\
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x=3 x=-1
\end{gathered}
$$

$\frac{x-i x^{x}}{-1,3}$

$$
y=\left\{\begin{array}{cc}
-x^{2}+2 x+3 & -1 \leq x \leq 3 \\
x^{2}-2 x-3 & x<-1 \cup x>3 \\
\text { inion } \\
\text { (or) } & \underset{x \text {-ints }}{ }
\end{array}\right.
$$

4. $y=\left|x^{2}-4\right|$
$\frac{x \text {-ints }}{-2,2}$

$$
\begin{gathered}
y= \begin{cases}x^{2}-4 & x \leq-2 \cup x \geq 2 \\
-x^{2}+4 & -2<x<2\end{cases} \\
y=-\left(x^{2}-4\right)
\end{gathered}
$$

